可能很多tensorflow的老版本玩家没见过这个东西,slim这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”。
但事实上它已经成为我比较喜欢,甚至是比较常用的模块,github上面大部分tensorflow的工程都会涉及到它,不得不说,撇开Keras,TensorLayer,tfLearn这些个高级库不谈,光用tensorflow能不能写出简洁的代码?当然行,有slim就够了!
惟一的缺点是slim这玩意的中文的文档几乎绝迹。所以国内还是Keras,tensorLayer这些官方文档比较完备的高级库的天下。
一.简介
slim被放在tensorflow.contrib这个库下面,导入的方法如下:
1
|
import
tensorflow.contrib.slim as slim
|
这样我们就可以使用slim了,既然说到了,先来扒一扒tensorflow.contrib这个库,tensorflow官方对它的描述是:此目录中的任何代码未经官方支持,可能会随时更改或删除。每个目录下都有指定的所有者。它旨在包含额外功能和贡献,最终会合并到核心TensorFlow中,但其接口可能仍然会发生变化,或者需要进行一些测试,看是否可以获得更广泛的接受。所以slim依然不属于原生tensorflow。
那么什么是slim?slim到底有什么用?
slim是一个使构建,训练,评估神经网络变得简单的库。它可以消除原生tensorflow里面很多重复的模板性的代码,让代码更紧凑,更具备可读性。另外slim提供了很多计算机视觉方面的著名模型(VGG, AlexNet等),我们不仅可以直接使用,甚至能以各种方式进行扩展。
slim的子模块及功能介绍:
arg_scope: provides a new scope named arg_scope that allows a user to define default arguments for specific operations within that scope.
除了基本的namescope,variabelscope外,又加了argscope,它是用来控制每一层的默认超参数的。(后面会详细说)
data: contains TF-slim's dataset definition, data providers, parallel_reader, and decoding utilities.
貌似slim里面还有一套自己的数据定义,这个跳过,我们用的不多。
evaluation: contains routines for evaluating models.
评估模型的一些方法,用的也不多
layers: contains high level layers for building models using tensorflow.
这个比较重要,slim的核心和精髓,一些复杂层的定义
learning: contains routines for training models.
一些训练规则
losses: contains commonly used loss functions.
一些loss
metrics: contains popular evaluation metrics.
评估模型的度量标准
nets: contains popular network definitions such as VGG and AlexNet models.
包含一些经典网络,VGG等,用的也比较多
queues: provides a context manager for easily and safely starting and closing QueueRunners.
文本队列管理,比较有用。
regularizers: contains weight regularizers.
包含一些正则规则
variables: provides convenience wrappers for variable creation and manipulation.
这个比较有用,我很喜欢slim管理变量的机制
具体子库就这么多拉,接下来干货时间!
二.slim定义模型
slim中定义一个变量的示例:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# Model Variables
weights = slim.model_variable(
'weights'
,
shape=[
10
,
10
,
3
,
3
],
initializer=tf.truncated_normal_initializer(stddev=
0.1
),
regularizer=slim.l2_regularizer(
0.05
),
device=
'/CPU:0'
)
model_variables = slim.get_model_variables()
# Regular variables
my_var = slim.variable(
'my_var'
,
shape=[
20
,
1
],
initializer=tf.zeros_initializer())
regular_variables_and_model_variables = slim.get_variables()
|
如上,变量分为两类:模型变量和局部变量。局部变量是不作为模型参数保存的,而模型变量会再save的时候保存下来。这个玩过tensorflow的人都会明白,诸如global_step之类的就是局部变量。slim中可以写明变量存放的设备,正则和初始化规则。还有获取变量的函数也需要注意一下,get_variables是返回所有的变量。
slim中实现一个层:
首先让我们看看tensorflow怎么实现一个层,例如卷积层:
1
2
3
4
5
6
7
8
9
|
input = ...
with tf.name_scope(
'conv1_1'
) as scope:
kernel = tf.Variable(tf.truncated_normal([
3
,
3
,
64
,
128
], dtype=tf.float32,
stddev=1e-
1
), name=
'weights'
)
conv = tf.nn.conv2d(input, kernel, [
1
,
1
,
1
,
1
], padding=
'SAME'
)
biases = tf.Variable(tf.constant(
0.0
, shape=[
128
], dtype=tf.float32),
trainable=True, name=
'biases'
)
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
|
然后slim的实现:
1
2
|
input = ...
net = slim.conv2d(input,
128
, [
3
,
3
], scope=
'conv1_1'
)
|
但这个不是重要的,因为tenorflow目前也有大部分层的简单实现,这里比较吸引人的是slim中的repeat和stack操作:
假设定义三个相同的卷积层:
1
2
3
4
5
|
net = ...
net = slim.conv2d(net,
256
, [
3
,
3
], scope=
'conv3_1'
)
net = slim.conv2d(net,
256
, [
3
,
3
], scope=
'conv3_2'
)
net = slim.conv2d(net,
256
, [
3
,
3
], scope=
'conv3_3'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool2'
)
|
在slim中的repeat操作可以减少代码量:
1
2
|
net = slim.repeat(net,
3
, slim.conv2d,
256
, [
3
,
3
], scope=
'conv3'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool2'
)
|
而stack是处理卷积核或者输出不一样的情况:
假设定义三层FC:
1
2
3
4
|
# Verbose way:
x = slim.fully_connected(x,
32
, scope=
'fc/fc_1'
)
x = slim.fully_connected(x,
64
, scope=
'fc/fc_2'
)
x = slim.fully_connected(x,
128
, scope=
'fc/fc_3'
)
|
使用stack操作:
1
|
slim.stack(x, slim.fully_connected, [
32
,
64
,
128
], scope=
'fc'
)
|
同理卷积层也一样:
1
2
3
4
5
6
7
8
|
# 普通方法:
x = slim.conv2d(x,
32
, [
3
,
3
], scope=
'core/core_1'
)
x = slim.conv2d(x,
32
, [
1
,
1
], scope=
'core/core_2'
)
x = slim.conv2d(x,
64
, [
3
,
3
], scope=
'core/core_3'
)
x = slim.conv2d(x,
64
, [
1
,
1
], scope=
'core/core_4'
)
# 简便方法:
slim.stack(x, slim.conv2d, [(
32
, [
3
,
3
]), (
32
, [
1
,
1
]), (
64
, [
3
,
3
]), (
64
, [
1
,
1
])], scope=
'core'
)
|
slim中的argscope:
如果你的网络有大量相同的参数,如下:
1
2
3
4
5
6
7
8
9
|
net = slim.conv2d(inputs,
64
, [
11
,
11
],
4
, padding=
'SAME'
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
), scope=
'conv1'
)
net = slim.conv2d(net,
128
, [
11
,
11
], padding=
'VALID'
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
), scope=
'conv2'
)
net = slim.conv2d(net,
256
, [
11
,
11
], padding=
'SAME'
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
), scope=
'conv3'
)
|
然后我们用arg_scope处理一下:
1
2
3
4
5
6
|
with slim.arg_scope([slim.conv2d], padding=
'SAME'
,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
)
weights_regularizer=slim.l2_regularizer(
0.0005
)):
net = slim.conv2d(inputs,
64
, [
11
,
11
], scope=
'conv1'
)
net = slim.conv2d(net,
128
, [
11
,
11
], padding=
'VALID'
, scope=
'conv2'
)
net = slim.conv2d(net,
256
, [
11
,
11
], scope=
'conv3'
)
|
是不是一下子就变简洁了?这里额外说明一点,arg_scope的作用范围内,是定义了指定层的默认参数,若想特别指定某些层的参数,可以重新赋值(相当于重写),如上倒数第二行代码。那如果除了卷积层还有其他层呢?那就要如下定义:
1
2
3
4
5
6
7
8
9
10
|
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(stddev=
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
)):
with slim.arg_scope([slim.conv2d], stride=
1
, padding=
'SAME'
):
net = slim.conv2d(inputs,
64
, [
11
,
11
],
4
, padding=
'VALID'
, scope=
'conv1'
)
net = slim.conv2d(net,
256
, [
5
,
5
],
weights_initializer=tf.truncated_normal_initializer(stddev=
0.03
),
scope=
'conv2'
)
net = slim.fully_connected(net,
1000
, activation_fn=None, scope=
'fc'
)
|
写两个arg_scope就行了。
采用如上方法,定义一个VGG也就十几行代码的事了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
def vgg16(inputs):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(
0.0
,
0.01
),
weights_regularizer=slim.l2_regularizer(
0.0005
)):
net = slim.repeat(inputs,
2
, slim.conv2d,
64
, [
3
,
3
], scope=
'conv1'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool1'
)
net = slim.repeat(net,
2
, slim.conv2d,
128
, [
3
,
3
], scope=
'conv2'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool2'
)
net = slim.repeat(net,
3
, slim.conv2d,
256
, [
3
,
3
], scope=
'conv3'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool3'
)
net = slim.repeat(net,
3
, slim.conv2d,
512
, [
3
,
3
], scope=
'conv4'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool4'
)
net = slim.repeat(net,
3
, slim.conv2d,
512
, [
3
,
3
], scope=
'conv5'
)
net = slim.max_pool2d(net, [
2
,
2
], scope=
'pool5'
)
net = slim.fully_connected(net,
4096
, scope=
'fc6'
)
net = slim.dropout(net,
0.5
, scope=
'dropout6'
)
net = slim.fully_connected(net,
4096
, scope=
'fc7'
)
net = slim.dropout(net,
0.5
, scope=
'dropout7'
)
net = slim.fully_connected(net,
1000
, activation_fn=None, scope=
'fc8'
)
return
net
|
三.训练模型
这个没什么好说的,说一下直接拿经典网络来训练吧。
1
2
3
4
5
6
7
8
9
10
11
|
import
tensorflow as tf
vgg = tf.contrib.slim.nets.vgg
# Load the images and labels.
images, labels = ...
# Create the model.
predictions, _ = vgg.vgg_16(images)
# Define the loss functions and get the total loss.
loss = slim.losses.softmax_cross_entropy(predictions, labels)
|
是不是超级简单?
关于loss,要说一下定义自己的loss的方法,以及注意不要忘记加入到slim中让slim看到你的loss。
还有正则项也是需要手动添加进loss当中的,不然最后计算的时候就不优化正则目标了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
# Load the images and labels.
images, scene_labels, depth_labels, pose_labels = ...
# Create the model.
scene_predictions, depth_predictions, pose_predictions = CreateMultiTaskModel(images)
# Define the loss functions and get the total loss.
classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)
sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)
pose_loss = MyCustomLossFunction(pose_predictions, pose_labels)
slim.losses.add_loss(pose_loss) # Letting TF-Slim know about the additional loss.
# The following two ways to compute the total loss are equivalent:
regularization_loss = tf.add_n(slim.losses.get_regularization_losses())
total_loss1 = classification_loss + sum_of_squares_loss + pose_loss + regularization_loss
# (Regularization Loss is included in the total loss by
default
).
total_loss2 = slim.losses.get_total_loss()
|
四.读取保存模型变量
通过以下功能我们可以载入模型的部分变量:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
# Create some variables.
v1 = slim.variable(name=
"v1"
, ...)
v2 = slim.variable(name=
"nested/v2"
, ...)
...
# Get list of variables to restore (which contains only
'v2'
).
variables_to_restore = slim.get_variables_by_name(
"v2"
)
# Create the saver which will be used to restore the variables.
restorer = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
# Restore variables from disk.
restorer.restore(sess,
"/tmp/model.ckpt"
)
print(
"Model restored."
)
|
除了这种部分变量加载的方法外,我们甚至还能加载到不同名字的变量中。
假设我们定义的网络变量是conv1/weights,而从VGG加载的变量名为vgg16/conv1/weights,正常load肯定会报错(找不到变量名),但是可以这样:
1
2
3
4
5
6
7
8
9
10
|
def name_in_checkpoint(var):
return
'vgg16/'
+ var.op.name
variables_to_restore = slim.get_model_variables()
variables_to_restore = {name_in_checkpoint(var):var
for
var in variables_to_restore}
restorer = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
# Restore variables from disk.
restorer.restore(sess,
"/tmp/model.ckpt"
)
|
通过这种方式我们可以加载不同变量名的变量!!