线性筛

前言:

按 $GrayGoods$ 大佬所说的,所有积性函数都可以线筛

所以在这里我只给出质数,欧拉函数和莫比乌斯函数的筛法(逃~~~)

正文:

质数

筛质数好像有很多种方法,这里只介绍两种

第一种是埃筛暴力筛

这种筛法的优点是只需开一个 $bool$ 数组

但复杂度是 $O(nloglogn)$ 的

代码还是比较好理解的

bool is_prime[maxn];

void check_prime(int n)
{
    for(int i=2;i<=n;i++)
        is_prime[i]=1;
    for(int i=0;i<=n;i++)
    {
        if(is_prime[i]==1)
        {
            for(int j=2;j*i<=n;j++)
                is_prime[i*j]=0;
        }
    }  
}

另一种是欧拉筛,也就我们所说的线筛

这种筛法的优点是严格 $O(n)$ 的时间复杂度

但是要另开一个数组记录所有的质数

int cnt,prime[maxn];
bool not_prime[maxn];

void check_prime(int n)
{
    not_prime[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!not_prime[i]) prime[++cnt]=i;
        for(int j=1;j<=cnt&&i*prime[j]<=n;j++)
        {
            not_prime[i*prime[j]]=1;
            if(i%prime[j]==0) break;//保证每个数只被它最小的质因子筛去
        }
    }
}

欧拉函数

欧拉函数的定义 $φ(n)$ 表示的是比 $n$ 小的与 $n$ 互质的正整数的个数,特别的 $φ(1)=1$

有一个很显然的性质是如果 $n$ 是一个质数,那么 $φ(n)=n-1$

同时作为一个积性函数,$φ(n \times m)=φ(n) \times φ(m)$ ,当且仅当 $gcd(n,m)=1$

所以当 $i\ mod\ prime[j] \neq 0$ 即 $gcd(i,prime[j])=1$ 时

$φ(i \times prime[j])=φ(i) \times φ(prime[j])$

而当 $i\ mod\ prime[j]=0$ 时

我们可以知道 $i$ 中包含了 $n=i*prime[j]$ 的所有因子

根据欧拉函数的另一个性质($cnt$ 为因子个数)

我们有 $φ(n)=n \times \prod_{k=1}^{cnt} \dfrac{p_k-1}{p_k}$

所以 $φ(n)=prime[j] \times i \times \prod_{k=1}^{cnt} \dfrac{p_k-1}{p_k}$

所以 $φ(n)=prime[j] \times φ(i)$

这样我们就可以得到

$φ(i*prime[j])=φ(i)*prime[j]$

然后稍微魔改一下欧拉筛,就可以线性筛出欧拉函数

int phi[maxn];
int cnt,prime[maxn];
bool not_prime[maxn];

void check_phi(int n)
{
    phi[1]=1;
    not_prime[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!not_prime[i])
        {
            phi[i]=i-1;
            prime[++cnt]=i;
        }
        for(int j=1;j<=cnt&&i*prime[j]<=n;j++)
        {
            not_prime[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            else phi[i*prime[j]]=phi[i]*phi[prime[j]];
        }
    }
}

莫比乌斯函数

关于莫比乌斯函数 $μ(n)$ 的定义

$(1)$ $μ(1)=1$

$(2)$ 当 $n$ 存在平方因子时 $μ(n)=0$

$(3)$ 当 $n$ 是质数或奇数个不同质数之积时 $μ(n)=-1$

$(4)$ 当 $n$ 是偶数个不同质数之积时 $μ(n)=1$

写成表达式的形式就是

$μ(n)=\begin{cases}  \quad 1 \quad \quad \quad \;\;\; n=1 \\  (-1)^k  \quad n=p_1p_2\cdots p_k\\ \quad 0 \quad \quad \quad\; \; others \end{cases}$

同样的,它也是一个积性函数

$μ(n \times m)=μ(n) \times μ(m)$ ,当且仅当 $gcd(n,m)=1$

所以当 $i\ mod\ prime[j] \neq 0$ 即 $gcd(i,prime[j])=1$ 时

$μ(i \times prime[j])=μ(i) \times μ(prime[j])$

而 $μ(prime[j])=-1$ ,所以我们可以直接写成

$μ(i \times prime[j])=-μ(i)$

这样又可以愉快地魔改欧拉筛了

int miu[maxn];
int cnt,prime[maxn];
bool not_prime[maxn];

void check_miu(int n)
{
    miu[1]=1;
    not_prime[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!not_prime[i])
        {
            miu[i]=-1;
            prime[++cnt]=i;
        }
        for(int j=1;j<=cnt&&i*prime[j]<=n;j++)
        {
            not_prime[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                miu[i*prime[j]]=0;
                break;
            }
            else miu[i*prime[j]]=-miu[i];
        }
    }
}

后序:

个人感觉筛 $φ$ 和筛 $μ$ 的方式差不多

都是在欧拉筛的基础上,根据积性函数的性质魔改了一下

$ps:$ 现在你会线筛 $μ$ 了,你可以做莫反的题了(逃~~~)

转载于:https://www.cnblogs.com/Vscoder/p/10524224.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值