
阿里DIN和SIM模型的分享
query和key计算activation weight,然后value再和activation weight相乘,得到新的embedding表示。解决的问题:用户行为序列很长的时候,DIN模型计算量会巨大,如果粗暴的只选前100作为用户行为序列,会丢掉用户的长期行为兴趣。将用户行为序列中的所有商品embedding相加,得到最后的用户行为embedding。通过商品类目进行筛选,只有和候选广告类目相同的用户行为数据才会被选出送到下一级进行建模。解决方案:用户行为序列先筛选一波,再进入模型。


















