深度学习标签制作简易Python代码

如果你想制作一个原始数据到标签一一映射的训练数据集,这里给你一个简易的想法,大概分3步。

①在Excel表中填入你的数据和标签,以下分别是原始图像和Excel表:

                                               

②将Excel表保存成.csv格式,另存为--》浏览--》.csv:


③通过.csv文件中的信息,分别调用你数据集中的数据,并返回对应标签,Python代码如下:

#Anthony
#本程序作用是通过读取CSV文件中的信息如‘image011’,其中‘image01’为图片的名称,‘1’为图像标签。
#然后通过CSV文件中的信息来调用文件‘文件路径+image01’来调取图像。

import csv
import matplotlib.pyplot as plt # plt 用于显示图像
import matplotlib.image as mpimg # mpimg 用于读取图像

csv_reader = csv.reader(open(r'C:\Users\Anthony\Desktop\label.csv'))#读取csv文件中的数据,r是防止转义带来bug
for row in csv_reader:#一行行的读取
    image_X='文件路径'+row[0]+'.png'#文件路径+图片名=图像的路径
    label_Y=row[1]#图像的标签
    image_read = mpimg.imread(image_X)#读取图像
    '''放一些其他的操作'''
    print(image_X)
    print(label_Y)
    plt.imshow(image_read,cmap='Greys_r')#灰度图像
    plt.axis('off')  # 不显示坐标轴
    plt.show()

这样简易的数据到标签的一一映射就完成了,很多小白想不到好的方法解决这个问题,方法很多会一种就够了,TensorFlow中的TFRecord也可以解决,不过略麻烦。

另外说一句,基础为王,如果你有扎实的Python基础,可能就会各种技巧方法信手拈来了。


发布了6 篇原创文章 · 获赞 6 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览