论文介绍
题目:
Hybrid CNN Bi-LSTM neural network for Hyperspectral image classification
论文地址:
链接: https://arxiv.org/pdf/2402.10026
创新点
文章提出了一种结合3D CNN、2D CNN和Bi-LSTM的混合神经网络模型(HSSNB),用于高光谱图像分类。该模型旨在减少训练参数数量的同时提高分类准确性,并通过在三个数据集(Indian Pines、Pavia University和Salinas Scene)上的测试,展示了其优于现有深度学习模型的性能。
文章的主要创新点包括:
-
混合神经网络模型:提出了一种基于3-D CNN、2-D CNN和Bi-LSTM的新型混合神经网络模型,用于高光谱图像分类。这种模型结合了3-D CNN的空间-光谱特征学习能力和Bi-LSTM在处理序列数据时对特征间相关性学习的优势。
-
参数效率:该模型在减少可训练参数数量的同时,提高了分类的准确性。相比于现有的最先进模型,该模型仅使用了30%的可训练参数,但在三个数据集(Indian Pines、Pavia University和Salinas Scene)上均实现了更好的分类性能。
-
信息丢失问题的解决:通过引入Bi-LSTM,模型能够解决信息丢失问题,并提高分类结果。Bi-LSTM通过从正向和反向两个方向训练,更有效地理解特征间的相关性。
-
性能提升:在Indian Pines数据集上,该模型在kappa、平均准确度(AA)和总体准确度(OA)上分别比HybridSN模型高出0.09%、0.26%和0.08%。在Pavia University和Salinas Scene数据集上,该模型保持了与HybridSN相同的准确度。
-
对训练数据的鲁棒性:即使在减少训练样本到10%的情况下,该模型仍然能够优于其他模型,表现出良好的鲁棒性。
方法
模型总体架构
这篇文章提出的模型是一个混合神经网络,它整合了3-D CNN、2-D CNN和Bi-LSTM来处理高光谱图像分类任务。模型的架构首先利用3-D CNN层来捕获图像的联合空间-光谱特征,接着通过2-D CNN层进一步提取抽象的空间特征。完成这些步骤后,模型的输出被送入Bi-LSTM层,该层通过分析2-D CNN的输出来预测类别,同时考虑到序列数据中的特征相关性。这个混合模型的优势在于它减少了可训练参数的数量,降低了模型的复杂度,并且在实验中显示出比现有最先进模型更好的分类性能。
模型迁移
文章提出的混合神经网络模型,结合了3-D CNN、2-D CNN和Bi-LSTM,具有较好的特征提取和序列数据处理能力,因此具有一定的迁移潜力,可以适用于多种任务和领域:
-
图像分类任务:由于模型能够有效提取空间和光谱特征,它可以被迁移到其他图像分类任务中,比如自然场景识别、医学图像分析等。
-
遥感影像分析:在遥感领域,类似的高光谱或多光谱图像可以用于土地覆盖分类、植被监测、城市发展规划等。
-
视频处理:Bi-LSTM层擅长处理序列数据,因此模型可以迁移到视频处理任务中,如动作识别、视频分类等。
-
时间序列预测:由于Bi-LSTM能够处理时间序列数据,模型可以应用于金融领域的股价预测、气象领域的天气预测等。
消融实验
消融实验的结果表明:
-
窗口尺寸的影响:通过在不同窗口尺寸(19×19、21×21、23×23和25×25)下测试模型,发现25×25的窗口尺寸最适合所使用数据集,因此后续实验均采用这一窗口尺寸。
-
模型在不同数据集上的表现:在Indian Pines数据集上,HSSNB模型在kappa、平均准确度(AA)和总体准确度(OA)上分别达到了99.80%、99.89%和99.83%,相较于HybridSN模型有小幅度提升。在Pavia University数据集上,HSSNB模型与HybridSN模型表现相当。而在Salinas Scene数据集上,HSSNB模型实现了100%的准确度。
-
模型对训练数据量的鲁棒性:即使在将训练样本减少到10%的情况下,HSSNB模型在Indian Pines数据集上的表现仅略有下降,而在Pavia University和Salinas Scene数据集上的表现与使用30%训练数据时相当,显示出模型对训练数据量的减少具有较好的鲁棒性。
-
模型参数效率:HSSNB模型仅使用了HybridSN模型30%的可训练参数,但在多个数据集上实现了更好的或相当的分类性能,证明了模型在参数效率上的优势。
这些消融实验结果强调了HSSNB模型在参数效率、准确度以及对训练数据量变化的鲁棒性方面的优势。