一、简单的分片上传
针对第一个问题,如果文件过大,上传到一半断开了,若重新开始上传的话,会很消耗时间,并且你也并不知道距离上次断开时,已经上传到哪一部分了。因此我们应该先对大文件进行分片处理,防止上面提到的问题。
前端代码:
html
复制代码
<!DOCTYPE html> <html> <head> <title>文件上传示例</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> </head> <body> <form> <input type="file" id="fileInput" multiple> <button type="button" onclick="upload()" >上传</button> </form> <script> function upload() { var fileInput = document.getElementById('fileInput'); var fileName = document.getElementById("fileInput").files[0].name; var files = fileInput.files; var chunkSize = 1024 * 10; // 每个块的大小为10KB var totalChunks = Math.ceil(files[0].size / chunkSize); // 文件总块数 var currentChunk = 0; // 当前块数 // 分片上传文件 function uploadChunk() { var xhr = new XMLHttpRequest(); var formData = new FormData(); // 将当前块数和总块数添加到formData中 formData.append('currentChunk', currentChunk); formData.append('totalChunks', totalChunks); formData.append('fileName',fileName); // 计算当前块在文件中的偏移量和长度 var start = currentChunk * chunkSize; var end = Math.min(files[0].size, start + chunkSize); var chunk = files[0].slice(start, end); // 添加当前块到formData中 formData.append('chunk', chunk); // 发送分片到后端 xhr.open('POST', '/file/upload'); xhr.send(formData); xhr.onload = function() { // 更新当前块数 currentChunk++; // 如果还有未上传的块,则继续上传 if (currentChunk < totalChunks) { uploadChunk(); } else { // 所有块都上传完毕,进行文件合并 mergeChunks(fileName); } } } // 合并所有分片 function mergeChunks() { var xhr = new XMLHttpRequest(); xhr.open("POST", "/file/merge", true); xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded"); xhr.onreadystatechange = function() { if (xhr.readyState === 4) { if (xhr.status === 200) { console.log("文件上传完成:", xhr.responseText); } else { console.error(xhr.responseText); } } }; xhr.send("fileName=" + fileName); } // 开始上传 uploadChunk(); } </script> </body> </html>
ps:以上代码使用了html+js完成,请求是使用了xhr来发送请求。其中xhr.open的地址为自己本地的接口地址。由于平时测试并不需要真正上传大型文件,所以每个分片的大小定义为10KB,以此模拟大文件上传。
后端代码:
java
复制代码
@RestController @RequestMapping("/file") public class FileController { @Autowired private ResourceLoader resourceLoader; @Value("${my.config.savePath}") private String uploadPath; private Map<String, List<File>> chunksMap = new ConcurrentHashMap<>(); @PostMapping("/upload") public void upload(@RequestParam int currentChunk, @RequestParam int totalChunks, @RequestParam MultipartFile chunk,@RequestParam String fileName) throws IOException { // 将分片保存到临时文件夹中 String chunkName = chunk.getOriginalFilename() + "." + currentChunk; File chunkFile = new File(uploadPath, chunkName); chunk.transferTo(chunkFile); // 记录分片上传状态 List<File> chunkList = chunksMap.get(fileName); if (chunkList == null) { chunkList = new ArrayList<>(totalChunks); chunksMap.put(fileName, chunkList); } chunkList.add(chunkFile); } @PostMapping("/merge") public String merge(@RequestParam String fileName) throws IOException { // 获取所有分片,并按照分片的顺序将它们合并成一个文件 List<File> chunkList = chunksMap.get(fileName); if (chunkList == null || chunkList.size() == 0) { throw new RuntimeException("分片不存在"); } File outputFile = new File(uploadPath, fileName); try (FileChannel outChannel = new FileOutputStream(outputFile).getChannel()) { for (int i = 0; i < chunkList.size(); i++) { try (FileChannel inChannel = new FileInputStream(chunkList.get(i)).getChannel()) { inChannel.transferTo(0, inChannel.size(), outChannel); } chunkList.get(i).delete(); // 删除分片 } } chunksMap.remove(fileName); // 删除记录 // 获取文件的访问URL Resource resource = resourceLoader.getResource("file:" + uploadPath + fileName); //由于是本地文件,所以开头是"file",如果是服务器,请改成自己服务器前缀 return resource.getURI().toString(); } }
ps: 使用一个map记录上传了哪些分片,这里将分片存在了本地的文件夹,等到分片都上传完成后合并并删除分片。用ConcurrentHashMap代替HashMap是因为它在多线程下是安全的。
以上只是一个简单的文件上传代码,但是只要在这上面另做修改就可以解决上面提到的问题。
二、解决问题
1. 怎么避免大量的硬盘读写
上面代码有一个弊端,就是将分片的内容存在了本地的文件夹里。而且在合并的时候判断上传是否完全也是从文件夹读取文件的。对磁盘的大量读写操作不仅速度慢,还会导致服务器崩溃,因此下面代码使用了redis来存储分片信息,避免对磁盘过多读写。(你也可以使用mysql或者其他中间件来存储信息,由于读写尽量不要在mysql,所以我使用了redis)。
2.目标文件过大,如果在上传过程中断开了怎么办
使用redis来存储分片内容,当断开后,文件信息还是存储在redis中,用户再次上传时,检测redis是否有该分片的内容,如果有则跳过。
3. 前端页面上传的文件数据与原文件数据不一致该如何发现
前端在调用上传接口时,先计算文件的校验和,然后将文件和校验和一并传给后端,后端对文件再计算一次校验和,两个校验和进行对比,如果相等,则说明数据一致,如果不一致则报错,让前端重新上传该片段。 js计算校验和代码:
js
复制代码
// 计算文件的 SHA-256 校验和 function calculateHash(fileChunk) { return new Promise((resolve, reject) => { const blob = new Blob([fileChunk]); const reader = new FileReader(); reader.readAsArrayBuffer(blob); reader.onload = () => { const arrayBuffer = reader.result; const crypto = window.crypto || window.msCrypto; const digest = crypto.subtle.digest("SHA-256", arrayBuffer); digest.then(hash => { const hashArray = Array.from(new Uint8Array(hash)); const hashHex = hashArray.map(b => b.toString(16).padStart(2, '0')).join(''); resolve(hashHex); }); }; reader.onerror = () => { reject(new Error('Failed to calculate hash')); }; }); }
java
复制代码
public static String calculateHash(byte[] fileChunk) throws Exception { MessageDigest md = MessageDigest.getInstance("SHA-256"); md.update(fileChunk); byte[] hash = md.digest(); ByteBuffer byteBuffer = ByteBuffer.wrap(hash); StringBuilder hexString = new StringBuilder(); while (byteBuffer.hasRemaining()) { hexString.append(String.format("%02x", byteBuffer.get())); } return hexString.toString(); }
注意点:
- 这里前端和后端计算校验和的算法一定要是一致的,不然得不到相同的结果。
- 在前端中使用了crypto对文件进行计算,需要引入相关的js。 你可以使用script引入也可以直接下载js
html
复制代码
<script src="https://cdn.bootcss.com/crypto-js/3.1.9-1/crypto-js.min.js"></script>
crypto的下载地址 如果github打不开,可能需要使用npm下载了
4. 上传过程中如果断开了应该如何判断哪些分片没有上传
对redis检测哪个分片的下标不存在,若不存在则存入list,最后将list返回给前端
java
复制代码
boolean allChunksUploaded = true; List<Integer> missingChunkIndexes = new ArrayList<>(); for (int i = 0; i < hashMap.size(); i++) { if (!hashMap.containsKey(String.valueOf(i))) { allChunksUploaded = false; missingChunkIndexes.add(i); } } if (!allChunksUploaded) { return ResponseEntity.status(HttpStatus.BAD_REQUEST).body(missingChunkIndexes); }
三、完整代码
1、引入依赖
xml
复制代码
<dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>6.1.4.RELEASE</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency>
lettuce是一个Redis客户端,你也可以不引入,直接使用redisTemplat就行了
2、前端代码
html
复制代码
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>File Upload Demo</title> </head> <body> <input type="file" id="fileInput" multiple> <button type="button" onclick="uploadFile()" >上传</button> <div id="progressBar"></div> <script src="https://cdn.bootcss.com/crypto-js/3.1.9-1/crypto-js.min.js"></script> <script> var fileId = ""; var fileName = null; var file; const chunkSize = 1024 * 10; // 每个分片的大小10KB async function uploadFile() { var fileInput = document.getElementById('fileInput'); file = fileInput.files[0]; fileName = document.getElementById("fileInput").files[0].name; // 分片上传文件 const chunks = Math.ceil(file.size / chunkSize); for (let i = 0; i < chunks; i++) { try { await uploadChunk(file, i); } catch (error) { console.error('Failed to upload chunk', i, error); // 如果上传失败,则尝试恢复上传 try { await uploadChunk(file, i); } catch (error) { console.error('Failed to resume upload', i, error); return; } } } // 合并文件 try { const fileUrl = await mergeFile(); console.log('File URL:', fileUrl); } catch (error) { console.error('Failed to merge file', error); } } function uploadChunk(file, chunkIndex) { return new Promise((resolve, reject) => { let fileTemp = file.slice(chunkIndex * chunkSize, (chunkIndex + 1) * chunkSize); var myPromise = calculateHash(fileTemp); myPromise.then(result =>{ const formData = new FormData(); formData.append('chunk',fileTemp); formData.append('chunkIndex', chunkIndex); formData.append('chunkChecksum', result); formData.append('chunkSize', chunkSize); formData.append('fileId',fileId); const xhr = new XMLHttpRequest(); xhr.open('POST', '/hospital/file2/upload', true); xhr.onload = () => { if (xhr.status === 200) { resolve(xhr.response); fileId = xhr.responseText } else { reject(xhr.statusText); } }; xhr.onerror = () => { reject(xhr.statusText); }; xhr.send(formData); }) }); } function mergeFile() { return new Promise((resolve, reject) => { const xhr = new XMLHttpRequest(); const formData = new FormData(); formData.append('fileId',fileId); formData.append('fileName',fileName); xhr.open('POST', '/hospital/file2/merge', true); xhr.onload = () => { if (xhr.status === 200) { resolve(xhr.response); } else { reject(xhr.statusText); resume(xhr.response.replace(/\[|]/g,'').split(',')); } }; xhr.onerror = () => { reject(xhr.statusText); }; xhr.send(formData); }); } async function resume(list){ for (let i = 0; i < list.length; i++) { try { await uploadChunk(file, i); } catch (error) { console.error('Failed to upload chunk', i, error); // 如果上传失败,则尝试恢复上传 try { await uploadChunk(file, i); } catch (error) { console.error('Failed to resume upload', i, error); return; } } } // 合并文件 try { const fileUrl = await mergeFile(); console.log('File URL:', fileUrl); } catch (error) { console.error('Failed to merge file', error); } } // 计算文件的 SHA-256 校验和 function calculateHash(fileChunk) { return new Promise((resolve, reject) => { const blob = new Blob([fileChunk]); const reader = new FileReader(); reader.readAsArrayBuffer(blob); reader.onload = () => { const arrayBuffer = reader.result; const crypto = window.crypto || window.msCrypto; const digest = crypto.subtle.digest("SHA-256", arrayBuffer); digest.then(hash => { const hashArray = Array.from(new Uint8Array(hash)); const hashHex = hashArray.map(b => b.toString(16).padStart(2, '0')).join(''); resolve(hashHex); }); }; reader.onerror = () => { reject(new Error('Failed to calculate hash')); }; }); } </script> </body> </html>
3、后端接口代码
java
复制代码
@RestController @RequestMapping("/file2") public class File2Controller { private static final String FILE_UPLOAD_PREFIX = "file_upload:"; @Autowired private ResourceLoader resourceLoader; @Value("${my.config.savePath}") private String uploadPath; @Autowired private ThreadLocal<RedisConnection> redisConnectionThreadLocal; // @Autowired // private RedisTemplate redisTemplate; @PostMapping("/upload") public ResponseEntity<?> uploadFile(@RequestParam("chunk") MultipartFile chunk, @RequestParam("chunkIndex") Integer chunkIndex, @RequestParam("chunkSize") Integer chunkSize, @RequestParam("chunkChecksum") String chunkChecksum, @RequestParam("fileId") String fileId) throws Exception { if (StringUtils.isBlank(fileId) || StringUtils.isEmpty(fileId)) { fileId = UUID.randomUUID().toString(); } String key = FILE_UPLOAD_PREFIX + fileId; byte[] chunkBytes = chunk.getBytes(); String actualChecksum = calculateHash(chunkBytes); if (!chunkChecksum.equals(actualChecksum)) { return ResponseEntity.status(HttpStatus.BAD_REQUEST).body("Chunk checksum does not match"); } // if(!redisTemplate.opsForHash().hasKey(key,String.valueOf(chunkIndex))) { // redisTemplate.opsForHash().put(key, String.valueOf(chunkIndex), chunkBytes); // } RedisConnection connection = redisConnectionThreadLocal.get(); Boolean flag = connection.hExists(key.getBytes(), String.valueOf(chunkIndex).getBytes()); if (flag==null || flag == false) { connection.hSet(key.getBytes(), String.valueOf(chunkIndex).getBytes(), chunkBytes); } return ResponseEntity.ok(fileId); } public static String calculateHash(byte[] fileChunk) throws Exception { MessageDigest md = MessageDigest.getInstance("SHA-256"); md.update(fileChunk); byte[] hash = md.digest(); ByteBuffer byteBuffer = ByteBuffer.wrap(hash); StringBuilder hexString = new StringBuilder(); while (byteBuffer.hasRemaining()) { hexString.append(String.format("%02x", byteBuffer.get())); } return hexString.toString(); } @PostMapping("/merge") public ResponseEntity<?> mergeFile(@RequestParam("fileId") String fileId, @RequestParam("fileName") String fileName) throws IOException { String key = FILE_UPLOAD_PREFIX + fileId; RedisConnection connection = redisConnectionThreadLocal.get(); try { Map<byte[], byte[]> chunkMap = connection.hGetAll(key.getBytes()); // Map chunkMap = redisTemplate.opsForHash().entries(key); if (chunkMap.isEmpty()) { return ResponseEntity.status(HttpStatus.NOT_FOUND).body("File not found"); } Map<String,byte[]> hashMap = new HashMap<>(); for(Map.Entry<byte[],byte[]> entry :chunkMap.entrySet()){ hashMap.put((new String(entry.getKey())),entry.getValue()); } // 检测是否所有分片都上传了 boolean allChunksUploaded = true; List<Integer> missingChunkIndexes = new ArrayList<>(); for (int i = 0; i < hashMap.size(); i++) { if (!hashMap.containsKey(String.valueOf(i))) { allChunksUploaded = false; missingChunkIndexes.add(i); } } if (!allChunksUploaded) { return ResponseEntity.status(HttpStatus.BAD_REQUEST).body(missingChunkIndexes); } File outputFile = new File(uploadPath, fileName); boolean flag = mergeChunks(hashMap, outputFile); Resource resource = resourceLoader.getResource("file:" + uploadPath + fileName); if (flag == true) { connection.del(key.getBytes()); // redisTemplate.delete(key); return ResponseEntity.ok().body(resource.getURI().toString()); } else { return ResponseEntity.status(555).build(); } } catch (Exception e) { e.printStackTrace(); return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body(e.getMessage()); } } private boolean mergeChunks(Map<String, byte[]> chunkMap, File destFile) { try (FileOutputStream outputStream = new FileOutputStream(destFile)) { // 将分片按照顺序合并 for (int i = 0; i < chunkMap.size(); i++) { byte[] chunkBytes = chunkMap.get(String.valueOf(i)); outputStream.write(chunkBytes); } return true; } catch (IOException e) { e.printStackTrace(); return false; } } }
4、redis配置
java
复制代码
@Configuration public class RedisConfig { @Value("${spring.redis.host}") private String host; @Value("${spring.redis.port}") private int port; @Value("${spring.redis.password}") private String password; @Bean public RedisConnectionFactory redisConnectionFactory() { RedisStandaloneConfiguration config = new RedisStandaloneConfiguration(); config.setHostName(host); config.setPort(port); config.setPassword(RedisPassword.of(password)); return new LettuceConnectionFactory(config); } @Bean public ThreadLocal<RedisConnection> redisConnectionThreadLocal(RedisConnectionFactory redisConnectionFactory) { return ThreadLocal.withInitial(() -> redisConnectionFactory.getConnection()); } }
使用 redisConnectionThreadLocal 是为了避免多次建立连接,很耗时间
总结
以上就是该功能的完整代码。使用代码记得修改uploadPath,避免代码找不到目录路径。在代码最后,可以使用mysql对整个文件计算校验和,将校验和结果和文件名、文件大小、文件类型存入数据库中,在下次大文件上传前先判断是否存在。若存在就不要上传避免占用空间。