Machine Learning & Deep Learning 论文阅读笔记



My Machine Learning & Deep Learning Papers Notes.


Machine Learning

Deep Learning

  • Understanding the difficulty of training deep feedforward neural networks (2010)
  • On the importance of initialization and momentum in deep learning (2013)
  • Accelerating learning via knowledge transfer (2016)(Net2net)

Computer Vision

Natural Language Processing

  • A Primer on Neural Network Models for Natural Language Processing
  • Natural Language Processing (Almost) from Scratch
  • Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing (2012)
  • Distributed representations of words and phrases and their compositionality (2013)(word2vec)
  • Efficient estimation of word representations in vector space (2013)
  • Distributed representations of sentences and documents (2014)
  • Glove: Global vectors for word representation (2014)
  • Convolutional neural networks for sentence classification (2014)
  • A convolutional neural network for modeling sentences (2014)
  • Recursive deep models for semantic compositionality over a sentiment treebank (2013)
  • Sequence to sequence learning with neural networks (2014)
  • Generating sequences with recurrent neural networks (2013)(LSTM, very nice generating result, show the power of RNN)
  • Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014)
  • Sequence to sequence learning with neural networks (2014)(Outstanding Work)
  • Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (2015)
  • Character-Aware Neural Language Models (2015)
  • Teaching Machines to Read and Comprehend (2015)(CNN/DailyMail cloze style questions)
  • Very Deep Convolutional Networks for Natural Language Processing (2016)(state-of-the-art in text classification)
  • Bag of Tricks for Efficient Text Classification (2016)(slightly worse than state-of-the-art, but a lot faster)



This project is licensed under the terms of the MIT license.

完整项目工程见 githubMachine Learning & Deep Learning Paper Notes,持续更新,欢迎大家一起研读论文。

发布了72 篇原创文章 · 获赞 26 · 访问量 31万+


©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客