微积分的本质
2023-05-23
面积问题
下面通过圆的面积计算问题,来理解微积分的核心思想。圆的面积是 π \pi π 乘以半径 R R R 的平方,大家有没有想过,这个公式是怎么来的?
探究该问题有助于我们理解微积分的三大思想:积分、导数以及它们的对立关系。
假设有个圆,其半径为 1。用一种最粗暴的方式估计圆的面积:将圆切割为许多小块,通过这些小块的面积加和获得圆的面积。圆的切割方式有很多种,例如:
上图中下面两种为对称分割。堆成分割更有利于计算。下面以同心圆分割方式为例。
展开圆环
从分割的同心圆中取出一个圆环,假设其半径为 r r r,显然其值在 0 到 1 之间。如果能计算圆环的面积,并将它们加起来,就能获得整个圆的面积。
假设圆环的厚度为 d r dr dr,可以将其理解为从一个同心圆到另一个同心圆半径的差值。在上图中,假设 d r = 0.1 dr=0.1 dr=0.1。为了避免理解"无穷小"这个概念,假设 d r dr dr 就是一个数字。
现在将这个圆环拉直,此时其宽度为圆环周长 2 π r 2\pi r 2πr( π \pi π 将圆的半径与周长联系起来),高度为 d r dr dr。
展开的圆环接近矩形,但不完全是。因为外圈的周长比内圈略大,所以展开圆环的底部比顶部稍宽。这里将其近似为矩形,宽度为 2 π r 2\pi r 2πr,高度为 d r dr dr。圆环的真实面积与矩形面积之间的误差如下所示:
当 d r dr dr 越小,环与矩形的面积越接近,即误差越小。
d r dr dr 越小,矩形与圆环的面积越接近。换句话说,将圆环的面积定义为 2 π r ⋅ d r 2\pi r\cdot dr 2πr⋅dr 可能不对,但是将圆分割地越细, d r dr dr 越小,该值就越接近圆环面积。
减小 d r dr dr 的示意图
2πr 直线图
将圆分割成圆环,把每个环的面积近似为 2 π ⋅ r ⋅ d r 2\pi\cdot r\cdot dr 2π⋅r⋅dr。那么如何把这些圆环的面积加起来呢?
圆环的内半径最小为 0,最大为 1,厚度为 d r dr dr。更严谨地说,圆环的内半径从 0 到 1 − d r 1-dr 1−dr,不过随着 d r dr dr 越小越小,最大值接近 1。
将所有矩形并排放在水平轴上。每个矩形的厚度为 d r dr dr,高度为 2 π r 2\pi r 2πr。
在数轴上绘制展开的圆环。
理解该问题的一个很好的方法是画出 2 π r 2\pi r 2πr 的图像,即斜率为 2 π 2\pi 2π 的直线。每个矩形的高度刚好落在该直线上。
在 2 π r 2\pi r 2πr 直线下展开的圆环。
这里每一个矩形与对应的圆环面积只是近似相等。但是,随着 d r dr dr 减小, 2 π ⋅ r ⋅ d r 2\pi\cdot r\cdot dr 2π⋅r⋅dr 与圆环面积越来越接近。
将这些矩形的面积相加咋一看没那么容易,但是,当 d r dr dr 很小时,这个问题反倒更容易。
2πr 直线下的展开圆环。
随着 d r dr dr 变小,矩形面积的加和与 2 π r 2\pi r 2πr 直线下的面积越来越接近。
直线下是一个三角形,底为
1
1
1,高度为
2
π
⋅
1
2\pi\cdot 1
2π⋅1。因此三角形的面积为
π
⋅
1
2
\pi\cdot 1^2
π⋅12。
A r e a = 1 2 b h = 1 2 ( 1 ) ( 2 π ⋅ 1 ) = π 1 2 \begin{equation} \begin{split} Area&=\frac{1}{2}bh\\ &=\frac{1}{2}(1)(2\pi\cdot1)\\ &=\pi 1^2 \end{split} \end{equation} Area=21bh=21(1)(2π⋅1)=π12
如果半径不是 1,而是 R R R,则面积为 1 2 ⋅ R ⋅ 2 π R \frac{1}{2}\cdot R\cdot 2\pi R 21⋅R⋅2πR.
A r e a = 1 2 b h = 1 2 ( R ) ( 2 π ⋅ R ) = π R 2 \begin{equation} \begin{split} Area&=\frac{1}{2}bh\\ &=\frac{1}{2}(R)(2\pi \cdot R)\\ &=\pi R^2 \end{split} \end{equation} Area=21bh=21(R)(2π⋅R)=πR2
这就是圆的面积公式。
用矩形逼近圆环面积,用直线下面积逼近矩形面积加和,最终用直线下面积表示圆的面积。
方法推广
数学不仅仅是寻找答案,还应该开发解决问题的通用工具和技术。圆面积的计算从近似到精确的过渡非常微妙,这是微积分的核心思想。
即假设你有一个问题,该问题可以用许多小数字的加和来近似,小数字取值为 2 π ⋅ r ⋅ d r 2\pi\cdot r\cdot dr 2π⋅r⋅dr,其中 r r r 从 0 到 1,每个数字近似一个圆环的面积。 d r dr dr 是圆环的厚度,如 0.1。这里需要注意, d r dr dr 不仅是圆环的厚度,也是不同 r r r 之间的间隔, d r dr dr 越小,近似效果越好。
为了计算这些数字相加,将这些小的矩形放在一个函数图中,对圆来说其函数图为 2 π ⋅ r 2\pi\cdot r 2π⋅r。
所以,随着 d r dr dr 越来越小,一方面,这些矩形切片的面积之和越来越接近圆的面积,另一方面,也接近直线 2 π ⋅ r 2\pi\cdot r 2π⋅r 下的面积。这是微积分的一个重要主题:通过细分来逼近问题,将原来困难的问题构造成更简单的问题。
积分
数学中的许多难题都可以分解、近似为许多小数量的加和。例如,根据一辆车在每个时间点的速度计算它行驶的距离,可以将时间段划分为许多个时间点,对每个时间点 t t t ,速度乘以时间的微小变化 d t dt dt 得到短时间内行驶的距离。
这些问题基本都等价于计算某个图形下的面积,与计算圆面积的问题一样。
只要这些小数值的加和接近原来的问题,就可以将其想象成许多并排矩形的面积加和。将原始问题划分的越细,对应的矩形越细,最后原始问题就等同于某个图形下的面积。
在计算圆面积中,很幸运地得到了三角形,如果是类似函数 x 2 x^2 x2 的抛物线,这条曲线下的面积如何计算?
重新表示该问题:将抛物线左边点固定为 0,希望找到函数
A
(
x
)
A(x)
A(x),表示抛物线 0 到
x
x
x 之间的面积?
在微积分中,
A
(
x
)
A(x)
A(x) 称为
x
2
x^2
x2 的积分。更准确地说,
A
(
x
)
A(x)
A(x) 是函数
f
(
t
)
=
t
2
f(t)=t^2
f(t)=t2 在 0 到
x
x
x 之间的积分。公式描述为:
A ( x ) = ∫ 0 x t 2 d t A(x)=\int_0^x t^2dt A(x)=∫0xt2dt
现在不管积分的概念,这里的要点是 A ( x ) A(x) A(x) 给出函数 x 2 x^2 x2 在 0 到 x 之间的面积。许多实际问题可以通过将大量小问题相加来近似,从而重构为计算某条曲线下面积的问题。
微分
可能直接计算 A ( x ) A(x) A(x) 太难。可以想象一下,当 x x x 稍微增加一点 d x dx dx,将面积的变化记作 d A dA dA。
增加的面积可以近似为一个矩形,其高度为
x
2
x^2
x2,宽度为
d
x
dx
dx。因此
A
A
A 的变化
d
A
dA
dA 近似于矩形面积:
d
A
≈
x
2
d
x
dA\approx x^2dx
dA≈x2dx
或者:
d A d x ≈ x 2 \frac{dA}{dx}\approx x^2 dxdA≈x2
即 A A A 的微小变化与 x x x 的微小变化的比值与 x x x 处图形的高度 x 2 x^2 x2 近似相等。 d x dx dx 越小,近似越好。
例如,考虑两个挨着的输入 3 和 3.001。x 的变化量 d x = 0.001 dx=0.001 dx=0.001。A 的变化 d A dA dA 是函数 A A A 在3.001 和 3 之间的差值。虽然我们不知道函数 A 的形式,但我们知道 d A dA dA 与 d x = 0.001 dx=0.001 dx=0.001 的比值接近 3 2 3^2 32。
A ( 3.001 ) − A ( 3 ) 0.001 ≈ 3 2 \frac{A(3.001)-A(3)}{0.001}\approx 3^2 0.001A(3.001)−A(3)≈32
这种关系对所有 x 都成立,不局限于 3。例如,在 x = 2 x=2 x=2 处可以看到同样的关系:
这里 x 2 x^2 x2 的图形也没有任何特殊之处,对任意函数 f ( x ) f(x) f(x),假设图形下面积为 A ( x ) A(x) A(x),都满足 d A / d x ≈ f ( x ) dA/dx\approx f(x) dA/dx≈f(x),当 d x dx dx 取值越小,该近似越好。
这里涉及微积分的另一个重要概念:导数。比值 d A d x \frac{dA}{dx} dxdA 称为 “A 的导数”,更专业地说,导致是当 d x dx dx 趋于无穷小时 d A d x \frac{dA}{dx} dxdA 值。
导数衡量一个函数对其输入微小变化的敏感度。
基本定理
积分和导数之间的来回转换,即对曲线下面积函数求导得到曲线函数本身,这是微积分的基本定理。它将积分和导数两个概念联系在一起。
符号说明
在数学中,有限数值变化一般以 Δ Δ Δ 表示,如 Δ x Δx Δx,而积分和微分中无限小的变化以 d x dx dx 表示,为了便于表示和理解,上面统一采用了 d x dx dx 。
参考
- https://www.3blue1brown.com/lessons/essence-of-calculus