【poj3070】 Fibonacci

本文介绍了一种使用矩阵快速幂的方法来高效地求解Fibonacci数列的第n项。通过定义特定的矩阵并利用快速幂运算,可以在对数时间内得到结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://poj.org/problem?id=3070 (题目链接)

题意:用矩阵乘法求fibonacci数列的第n项。

Solution
  矩乘入门题啊,题目把题解已经说的很清楚里= =。
  矩乘其实很简单,通过自己YY或者是搜索对于一个递推公式求出它所对应的矩阵,然后套个快速幂就可以迅速求解第n项。

代码:

// poj3070
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std;

int n,a[2][2],b[2][2];

void mul(int a[2][2],int b[2][2],int ans[2][2]) {
    int t[2][2];
    for (int i=0;i<2;i++)
        for (int j=0;j<2;j++) {
            t[i][j]=0;
            for (int k=0;k<2;k++) t[i][j]=(t[i][j]+a[i][k]*b[k][j])%10000;
        }
    for (int i=0;i<2;i++)
        for (int j=0;j<2;j++) ans[i][j]=t[i][j];
}
void pow(int k) {
    while (k) {
        if (k&1) mul(a,b,b);
        k>>=1;
        mul(a,a,a);
    }
}
int main() {
    while (scanf("%d",&n)!=EOF) {
        if (n==-1) break;
        a[0][0]=a[0][1]=a[1][0]=1;a[1][1]=0;
        b[0][0]=b[1][1]=1;
        b[1][0]=b[0][1]=0;
        pow(n);
        printf("%d\n",b[1][0]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值