- 博客(2165)
- 收藏
- 关注
原创 水下航行器能量收集器动力学和控制研究附Matlab代码
水下航行器(Underwater Vehicle, UV)作为一种重要的海洋探测和作业工具,在海洋资源勘探、海洋环境监测、水下救援和国防安全等领域发挥着日益重要的作用。然而,传统水下航行器普遍面临续航能力有限的问题,这极大地限制了其应用范围和效率。传统的电池供电方式不仅能量密度较低,而且需要定期回收进行充电,增加了时间和经济成本。因此,发展高效的水下能量收集技术,实现能量自给自足,是提升水下航行器性能、拓展其应用前景的关键所在。
2025-04-10 10:46:29
57
原创 使用在线优化的快速模型预测控制MPC附Matlab代码
模型预测控制(MPC)作为一种先进的过程控制策略,近年来在工业、机器人、汽车等领域得到了广泛应用。其核心思想是利用过程模型预测未来一段时间内的系统行为,并通过在线优化算法求解最优控制序列,从而实现对被控对象性能的优化。然而,传统的MPC方法计算复杂度高,对实时性要求高的应用场景构成挑战。因此,如何降低MPC的计算负担,实现快速的在线优化,成为当前MPC研究的热点。本文将深入探讨在线优化在快速MPC中的应用,重点分析关键技术、挑战以及未来的发展趋势。一、模型预测控制(MPC)概述。
2025-04-10 10:42:28
295
原创 使用削波和SLM技术表示具有PAPR降低的OFDM信号研究附Matlab代码
正交频分复用 (OFDM) 技术因其高频谱效率和抗多径衰落能力,在现代无线通信系统中得到了广泛应用。然而,OFDM信号固有的峰值平均功率比 (PAPR) 较高,这给射频功率放大器 (RFPA) 的设计带来了严峻挑战。高 PAPR 会导致功率放大器的非线性失真,降低传输效率,并可能引发邻道干扰。因此,降低 OFDM 信号的 PAPR 成为了一个重要的研究方向。本文将探讨使用削波 (Clipping) 和选择性映射 (SLM) 技术来降低 OFDM 信号 PAPR 的研究现状,并分析它们的优缺点。
2025-04-10 10:39:27
142
原创 使用相位对立分布PWM(PODPWM)技术模拟了三电平NPC研究附Simulink仿真
三电平中点钳位式(NPC)逆变器因其具有较低的电压应力、较高的开关频率和优良的谐波性能,在电力电子领域得到了广泛应用。脉冲宽度调制(PWM)技术是驱动逆变器工作的基础。本文重点研究了相位对立分布PWM(PODPWM)技术在三电平NPC逆变器中的应用,通过仿真手段分析了PODPWM调制下NPC逆变器的运行特性,并对仿真结果进行了详细的讨论,为进一步优化三电平NPC逆变器的控制策略提供了理论依据。关键词:三电平NPC逆变器;PODPWM;脉冲宽度调制;仿真;谐波分析引言。
2025-04-10 10:35:51
449
原创 使用模糊聚类解决时间序列确定性分量中存在的不精确性和不确定性附Python代码
时间序列分析是诸多领域,例如经济预测、金融建模、气候预测等,的重要工具。其核心在于将时间序列数据分解为不同的成分,包括趋势、季节性、周期性和残差。其中,确定性分量(趋势、季节性、周期性)的准确提取直接影响预测的精度和模型的解释性。然而,在现实应用中,确定性分量往往并非如理想模型般清晰明确,而是常常伴随着不精确性和不确定性,例如趋势的拐点模糊、季节性模式的微小变化、以及周期性振荡的不规则性。
2025-04-10 10:25:56
334
原创 使用多窗口Savitzky-Golay(MWSG)滤波器增强频谱图,用于鲁棒的鸟鸣检测附Matlab代码
鸟鸣检测在生态监测、生物多样性研究以及环境声学等领域具有重要的应用价值。然而,现实环境中复杂的背景噪声,例如风声、交通噪音和机械轰鸣,严重干扰了鸟鸣信号的提取,使得鸟鸣检测面临严峻的挑战。因此,开发一种能够有效抑制噪声并突出鸟鸣特征的算法,对于实现鲁棒的鸟鸣检测至关重要。本文探讨一种基于多窗口Savitzky-Golay(MWSG)滤波器增强频谱图的方法,并论证其在提升鸟鸣检测性能方面的优势。传统的鸟鸣检测方法通常依赖于时域或频域特征,例如能量、过零率、梅尔频率倒谱系数(MFCC)等。
2025-04-10 10:21:15
399
原创 深度卷积中目标检测与分类的联合选择与融合策略:深度卷积神经网络与SIFT点特征的联合选择与融合策略研究附Matlab代码
目标检测与分类是计算机视觉领域中的核心任务,广泛应用于安防监控、自动驾驶、智能医疗等多个场景。近年来,深度卷积神经网络(Deep Convolutional Neural Networks, CNNs)凭借其强大的特征学习能力,在目标检测与分类方面取得了显著的突破。然而,CNNs虽然能够自动学习高层次的抽象特征,但其对目标几何变换和光照变化的鲁棒性仍然存在不足,且在处理小目标或遮挡目标时性能会显著下降。
2025-04-10 10:18:39
281
原创 频率选择性瑞利衰落信道中的OFDM BER与SNR的关系研究附Matlab代码
正交频分复用 (Orthogonal Frequency Division Multiplexing, OFDM) 作为一种高效的无线通信技术,近年来在移动通信、无线局域网、数字电视广播等领域得到了广泛应用。其将高速数据流分解为多个并行的低速子载波进行传输,有效克服了频率选择性衰落信道带来的符号间干扰 (Inter-Symbol Interference, ISI) 问题。
2025-04-10 10:14:01
201
原创 配电系统的线性三相潮流研究【IEEE123节点】附Matlab代码
配电系统作为电力系统的重要组成部分,承担着将高压电力安全、可靠、经济地输送到用户终端的任务。随着分布式能源(Distributed Generation, DG)、电动汽车(Electric Vehicles, EV)等新型负荷的日益普及,配电系统的运行状态日益复杂,传统的潮流计算方法面临着诸多挑战。精确、高效的潮流计算对于配电系统的规划、运行、控制以及故障诊断至关重要。本文将围绕配电系统的线性三相潮流展开研究,并以广泛应用的IEEE123节点系统为例,深入分析线性潮流算法在该复杂系统中的应用与性能。
2025-04-10 09:57:31
451
原创 模拟钟摆的运动研究附Matlab代码
钟摆作为一种经典的物理模型,以其简洁的结构和复杂的动力学行为,在物理学研究中占据着重要的地位。对钟摆运动的研究不仅有助于理解基础物理概念,如能量守恒、简谐运动、周期性等,还为更复杂的物理系统的分析提供了宝贵的借鉴。随着计算机技术的快速发展,通过数值模拟来研究钟摆的运动,已经成为一种重要的研究手段。本文旨在探讨模拟钟摆运动的研究,从其物理原理、数学建模、数值方法到实际应用等方面进行全面的论述。一、钟摆运动的物理原理理想的简单钟摆由一根不可伸长的轻绳和连接在其末端的一个质点构成,忽略空气阻力和绳索的摩擦力。
2025-04-10 09:51:43
593
原创 模拟使用相位分布PWM(PDPWM)技术的五电平(NPC)研究附Simulink仿真
本文旨在探讨相位分布PWM (Phase Disposition PWM, PDPWM) 技术在五电平中点钳位 (Neutral Point Clamped, NPC) 逆变器中的应用。五电平NPC逆变器因其较低的谐波含量和较高的电压利用率,在交流调速、静止无功补偿等领域拥有广阔的应用前景。本文将首先介绍五电平NPC逆变器的拓扑结构及工作原理,然后详细阐述PDPWM调制技术的原理及其在五电平NPC逆变器中的实现方法。
2025-04-10 07:32:55
429
原创 面向100%清洁能源的发输电系统扩展规划研究附Matlab代码
全球气候变化的日益严峻以及能源安全问题的凸显,促使世界各国纷纷将发展清洁能源作为重要的战略选择。实现能源系统的全面清洁化,即100%清洁能源目标,已成为许多国家和地区应对气候变化的承诺。然而,向100%清洁能源转型的道路充满挑战,其中,发输电系统的扩展规划尤为关键,它直接关系到清洁能源的可靠接入、稳定运行以及经济效益。本文将深入探讨面向100%清洁能源的发输电系统扩展规划问题,分析其面临的挑战、可能的解决方案以及未来的研究方向。首先,我们需要明确100%清洁能源系统的内涵。
2025-04-10 07:28:42
375
原创 利用基于先验算法(PICCS)的fMRI研究的压缩传感重建中的时间冗余附Matlab代码
功能性磁共振成像(fMRI)已成为神经科学领域不可或缺的工具,它通过检测与神经活动相关联的血氧水平依赖(BOLD)信号,为研究大脑功能提供了独特的窗口。然而,传统的fMRI数据采集方式在时空分辨率上受到一定限制。为了提高数据采集效率,缩短扫描时间,并减少受试者的不适,压缩传感(Compressed Sensing,CS)技术应运而生。CS利用信号的稀疏性,以远低于奈奎斯特采样率的频率采集数据,并依靠重建算法恢复原始信号。
2025-04-10 07:09:10
496
原创 利用混沌间歇进行弱信号检测的时频高分辨率附Matlab代码
弱信号检测一直是信号处理领域中的一个核心难题,广泛存在于雷达、声呐、医学影像、地质勘探等诸多领域。弱信号往往淹没在强噪声背景之中,传统线性信号处理方法,如傅里叶变换、滤波器等,在信噪比极低的情况下性能大幅下降。近年来,非线性动力学理论,尤其是混沌理论的引入,为弱信号检测带来了新的思路和方法。其中,利用混沌间歇现象进行弱信号检测受到了越来越多的关注,并逐渐成为一个重要的研究方向。本文将深入探讨利用混沌间歇进行弱信号检测的理论基础,阐述其在时频高分辨率分析方面的优势,并展望其未来的发展方向。
2025-04-10 07:03:35
162
原创 利用光纤布拉格光栅和深度神经网络对Ruffini感受器进行功能模拟,实现了一种生物启发式的大面积触觉敏感皮肤附Matlab代码
触觉作为人类感知外部世界的重要手段之一,在人机交互、机器人技术、医疗康复等领域具有广泛的应用前景。传统的触觉传感器往往存在灵敏度低、易受电磁干扰、难以实现大面积集成等问题。近年来,生物启发式触觉传感技术借鉴生物触觉系统的优势,通过模仿生物触觉感受器的功能和结构,在提高触觉传感器的性能方面取得了显著进展。
2025-04-10 06:58:26
157
原创 快速LDP-MST:一种用于大型数据集的高效基于密度峰值的聚类方法附Matlab代码
聚类分析作为一种重要的数据挖掘技术,广泛应用于各个领域。基于密度峰值的聚类(Density Peak Clustering, DPC)算法以其原理简单、无需迭代、能识别任意形状簇等优点而备受关注。然而,传统DPC算法在处理大型数据集时面临计算复杂度高、内存占用大等挑战。本文将深入探讨一种名为“快速LDP-MST”(Fast LDP-MST)的高效基于密度峰值的聚类方法,该方法旨在解决DPC算法在大规模数据集上的应用瓶颈。
2025-04-09 12:15:39
782
原创 经典双积分器引导设计和ODE45模拟,典型控制系统“卫星姿态控制”问题附Matlab代码
卫星姿态控制是航天工程领域的核心问题之一,其目标是确保卫星始终保持期望的姿态,从而完成各种空间任务,如对地观测、空间通信和科学探测。由于空间环境的复杂性和卫星自身动力学模型的非线性,设计高效可靠的姿态控制器具有很大的挑战性。本文将探讨一种经典控制策略——双积分器引导设计,并结合ODE45数值求解器,解决卫星姿态控制问题。通过详细的理论分析和仿真验证,旨在展示双积分器引导设计在姿态控制中的优势和适用性。一、卫星姿态控制系统的模型与挑战。
2025-04-09 12:11:55
375
原创 基于自注意力机制的LSTM多变量负荷预测研究附Matlab代码
电力负荷预测作为电力系统规划、运行和控制的关键环节,其准确性直接影响着电网的安全、稳定和经济运行。传统的负荷预测方法,如时间序列分析、回归分析等,往往难以捕捉复杂非线性关系和长期依赖性,尤其是在多变量负荷预测场景下,预测精度难以满足实际需求。近年来,深度学习方法在负荷预测领域展现出巨大的潜力,特别是长短期记忆网络(LSTM)凭借其处理时序数据的优势,被广泛应用于负荷预测任务。然而,传统的LSTM网络在处理长序列数据时,可能存在梯度消失、梯度爆炸等问题,并且难以有效捕捉不同输入变量对预测结果的影响程度差异。
2025-04-09 10:50:20
403
原创 基于注意力机制的 CNN-BiGRU 短期电力负荷预测方法附Matlab代码
电力负荷预测在电力系统规划、调度和运营中至关重要。准确的短期电力负荷预测能够有效降低发电成本,提高电网运行效率,并为智能电网的实施提供保障。本文提出了一种基于注意力机制的卷积神经网络-双向门控循环单元 (CNN-BiGRU) 短期电力负荷预测方法。该方法首先利用 CNN 网络提取负荷时间序列中的局部特征,然后利用 BiGRU 网络捕捉时间序列的长期依赖关系,最后引入注意力机制,动态地调整不同时间步长的特征权重,从而提高预测精度。
2025-04-09 10:44:57
602
原创 基于注意力的多步超短期农业电力负荷预测分解策略和注意力长短期记忆网络预测研究附Python代码
精准的农业电力负荷预测对于优化农业用电管理、提高能源利用效率、保障农业生产安全至关重要。超短期负荷预测(Ultra-Short-Term Load Forecasting, USTLF)作为短期负荷预测的重要组成部分,在农业电力系统实时调度和控制中扮演着关键角色。然而,农业电力负荷具有明显的非线性、非平稳性以及受多种因素影响的特点,使得超短期负荷预测面临诸多挑战。本文深入研究基于注意力的多步超短期农业电力负荷预测方法,提出了一种基于分解策略和注意力长短期记忆网络(Attention-LSTM)的预测模型。
2025-04-09 10:32:10
322
原创 基于麻雀搜索优化kmeans的图像分割算法附Matlab代码
图像分割作为计算机视觉领域的基础性任务,旨在将图像划分为多个具有语义意义的区域,以便于后续的图像理解、目标识别和场景分析。传统的图像分割方法,如基于阈值的分割、基于区域的分割和基于边缘的分割,在处理复杂图像时往往表现出局限性。K-means聚类算法作为一种简单有效的无监督聚类方法,在图像分割领域得到广泛应用,但其初始聚类中心的选择对分割结果具有显著影响,易陷入局部最优解,导致分割精度降低。因此,如何优化K-means算法的初始聚类中心,提高分割精度和鲁棒性,一直是研究的热点。
2025-04-09 10:28:51
554
原创 基于粒子群优化算法的智能楼宇虚拟储能需求响应模型研究附Matlab代码
随着能源危机日益严重和可再生能源比例不断提高,构建智能、高效的能源管理系统已成为必然趋势。智能楼宇作为城市能源消费的重要组成部分,其能源管理水平直接影响城市整体能源效率。本文针对智能楼宇中需求响应的优化问题,提出了一种基于粒子群优化算法 (PSO) 的虚拟储能需求响应模型。该模型通过模拟虚拟储能单元,对楼宇内可控负荷进行智能调度,以实现降低用电成本、削峰填谷、提高可再生能源利用率等目标。通过详细的模型构建、算法设计和仿真实验,证明了该模型的有效性和可行性。
2025-04-09 10:19:22
704
原创 基于粒子群算法的参数辨识研究附Matlab代码
参数辨识,作为控制理论、信号处理和系统建模等领域的核心问题,旨在通过测量数据来确定未知系统的数学模型参数。这一过程对于系统分析、控制策略设计以及故障诊断至关重要。传统的参数辨识方法,如最小二乘法、梯度下降法等,虽然在某些情况下能够取得良好的效果,但往往存在计算复杂度高、对初始值敏感以及容易陷入局部最优解等问题。随着计算能力的提升和智能算法的发展,基于智能优化算法的参数辨识方法逐渐受到研究者的关注。
2025-04-09 10:16:32
583
原创 基于卡尔曼滤波的MPC汽车控制器研究附Python代码
现代汽车工业面临着日益增长的挑战,例如提高燃油效率、减少排放、增强安全性以及提升驾驶舒适性。在此背景下,先进的控制策略显得尤为重要。模型预测控制(MPC)因其能够显式地处理系统约束、优化未来一段时间内的控制性能,并且具有良好的跟踪能力,在汽车控制领域受到了广泛关注。然而,MPC的性能很大程度上依赖于精确的系统模型以及对系统状态的准确估计。在实际应用中,由于车辆动力学的复杂性、环境因素的干扰以及传感器噪声的存在,往往难以获得精确的模型和状态信息。
2025-04-09 10:11:46
725
原创 基于节点导纳矩阵的三相配电系统建模附Matlab代码
配电系统作为电力系统的重要组成部分,其安全、稳定、经济运行直接关系到终端用户的用电质量和电网整体效益。准确有效的配电系统建模是进行潮流计算、故障分析、可靠性评估以及规划优化等工作的基础。由于配电系统网络结构复杂、负荷分布不均、大量分布式电源接入等特点,传统的单相等值建模方法已难以满足日益增长的分析需求。三相配电系统建模能够更精细地刻画系统的不平衡特性,提高计算精度,因此备受关注。本文将着重探讨基于节点导纳矩阵的三相配电系统建模方法,阐述其原理、优势以及面临的挑战。
2025-04-09 10:06:34
494
原创 基于高斯 Copula 方法对分布的任意组合进行关联样本,并对相关参数进行迭代优化研究附Matlab代码
在复杂系统建模、风险管理和金融工程等领域,经常需要处理多个随机变量之间的相关性问题。然而,当这些随机变量服从不同的分布时,传统的线性相关性度量往往无法准确描述其复杂的依赖结构。Copula 函数提供了一种强大的工具,能够将随机变量的边缘分布与其依赖结构分离,从而灵活地构建多变量联合分布。本文重点研究基于高斯 Copula 方法的关联样本生成技术,并探讨相关参数的迭代优化策略,旨在提高样本的逼真度和模型的预测能力。
2025-04-09 10:01:54
661
原创 基于改进粒子群算法优化LSTM的短期电力负荷预测研究附Matlab代码
电力负荷预测作为电力系统规划、调度和运行控制的重要环节,其准确性直接影响着电力系统的经济性和可靠性。短期电力负荷预测,通常指未来几天或几小时的负荷预测,对于保障电力系统的安全稳定运行、降低发电成本、优化电网调度具有重要意义。近年来,随着人工智能技术的快速发展,越来越多的机器学习方法被应用于电力负荷预测领域。
2025-04-09 09:55:58
486
原创 基于改进Dropout的连续DBN无监督特征学习研究附Matlab代码
深度信念网络(DBN)作为一种高效的无监督特征学习方法,在图像识别、语音识别等领域取得了显著成就。然而,传统的DBN通常处理离散数据,难以直接应用于连续数据的特征提取。本文针对连续数据特征学习问题,深入研究了连续DBN的构建方法,并提出一种基于改进Dropout的连续DBN无监督特征学习框架。该框架在传统连续DBN的基础上,引入了一种自适应Dropout策略,旨在增强网络的泛化能力和抗噪能力。
2025-04-09 09:50:32
388
原创 基于标准PSO、自适应PSO、量子PSO、PSO-GA、PSO-GSA算法求解三个NP问题:TSP、QAP、背包问题研究附Matlab代码
粒子群优化算法 (PSO) 作为一种高效的元启发式算法,因其易于实现、参数较少和全局寻优能力强等特点,被广泛应用于解决各种复杂的优化问题。然而,标准 PSO 算法在解决大规模和高复杂度的 NP 问题时,容易陷入局部最优,导致搜索停滞。
2025-04-09 09:44:59
384
原创 基于BP神经网络的语言特征信号分类研究附Matlab代码
语言,作为人类交流沟通的核心工具,蕴含着丰富的信息。对语言特征信号进行精确分类,不仅是语音识别、情感分析、说话人识别等领域的基础,也为理解人类认知、社会行为以及文化传播提供了重要的途径。近年来,随着人工智能技术的快速发展,神经网络,尤其是反向传播(BP)神经网络,因其强大的非线性映射能力和自学习能力,在语言特征信号分类领域得到了广泛的应用和研究。本文将深入探讨基于BP神经网络的语言特征信号分类研究,分析其原理、方法、优势与挑战,并展望未来的发展趋势。一、语言特征信号的提取与分析。
2025-04-09 09:25:43
744
原创 孤岛型微电网中改进下垂控制策略附Simulink仿真
随着全球能源危机和环境问题的日益突出,可再生能源的开发和利用受到广泛关注。微电网作为一种集成了多种分布式电源(DG)、储能系统和负荷的电力系统,为可再生能源的有效接入和灵活利用提供了重要的解决方案。孤岛型微电网,由于其在远离主网或供电不稳定的地区提供电力供应的优势,在应急供电、偏远地区供电等方面具有重要意义。然而,孤岛型微电网的稳定运行面临着诸多挑战,其中频率和电压的稳定控制尤为关键。传统下垂控制策略,作为一种简单易行的功率分配方法,被广泛应用于孤岛型微电网中。
2025-04-08 19:33:26
297
原创 高维多阶段随机规划问题的正则化分解与马尔可夫不确定性研究附Python代码
高维多阶段随机规划问题作为一种重要的数学建模工具,在金融、能源、供应链管理等众多领域有着广泛的应用。其核心在于刻画在多个时间阶段,面对未来不确定性因素,如何做出最优的决策序列,以实现期望收益最大化或成本最小化等目标。然而,随着问题规模的扩大,特别是状态空间和随机变量维度的增加,高维多阶段随机规划问题面临着“维数灾难”的挑战。传统的求解方法,例如动态规划、情景树等,计算复杂度呈指数级增长,难以应用于实际问题。
2025-04-08 19:29:45
683
原创 高光谱端元提取算法利用凸几何和K均值附Matlab代码
高光谱成像技术能够获取数百个连续且窄的光谱波段信息,为地物识别、目标检测和环境监测等领域提供了强大的数据支持。然而,高光谱图像通常包含大量的混合像元,即单个像元内包含多种不同的地物成分,这给后续的分析带来了挑战。因此,端元提取(Endmember Extraction,EE)作为高光谱图像分析的关键预处理步骤,旨在从高光谱数据中识别出代表纯地物成分的端元光谱,为后续的解混和分类奠定基础。近年来,各种端元提取算法不断涌现,其中基于凸几何和K均值聚类的算法凭借其独特的优势,受到了广泛的关注。
2025-04-08 19:26:56
330
原创 非线性模型预测控制MPC问题求解研究附Matlab代码
模型预测控制(MPC)作为一种先进的控制策略,在工业过程控制、汽车控制、航空航天等领域得到了广泛应用。其核心思想是基于系统动态模型,在滚动时域内对未来的系统行为进行预测,并通过优化算法求解控制序列,并将序列中的第一个控制量作用于系统。MPC能够显式地考虑系统的约束条件,并根据实际情况进行在线优化,从而实现对复杂系统的精确控制。然而,当系统模型呈现非线性特性时,传统的线性MPC方法往往难以获得满意的控制效果。因此,对非线性模型预测控制(NMPC)问题求解的研究具有重要的理论价值和实际意义。
2025-04-08 19:24:43
424
原创 电机电流信号的调制信号双谱分析用于车削工况在线监测研究附Matlab代码
车削作为一种重要的金属切削加工方法,广泛应用于制造业的各个领域。然而,车削过程复杂多变,易受到多种因素的影响,如刀具磨损、切削参数变化、材料不均匀性等,导致工件表面质量下降、刀具寿命缩短,甚至引发安全事故。因此,实现车削工况的在线监测,及时发现和诊断异常工况,对于提高生产效率、保证产品质量、降低生产成本具有重要的现实意义。传统的车削工况监测方法主要依赖于加速度传感器、力传感器等,这些传感器虽然能够提供较为直接的工况信息,但也存在一些局限性。
2025-04-08 19:21:22
605
原创 单向拓扑结构下异构车辆排的分布式模型预测控制研究附Matlab代码
车辆排(Platooning)作为一种提高道路通行效率、降低能耗和提升行车安全性的新兴技术,近年来受到了广泛关注。它通过车辆间的协同控制,使得车辆能够以较小的车间距保持稳定的队形行驶。然而,实际道路交通环境复杂多变,车辆类型差异显著,车辆间通信受限等因素都给车辆排的控制带来了挑战。本文将针对单向拓扑结构下异构车辆排的分布式模型预测控制(Distributed Model Predictive Control, DMPC)展开研究,旨在提升异构车辆排的控制性能和鲁棒性。一、引言。
2025-04-08 19:18:28
819
原创 PID++:一种计算轻量级的人形运动控制算法附Matlab代码
人形机器人因其在医疗、康复、探索等领域的巨大潜力而备受关注。然而,复杂的多自由度结构和动态环境使得人形运动控制成为一项极具挑战性的任务。传统的运动控制算法,例如基于模型的控制或强化学习,往往计算复杂度高,对计算资源要求严苛,难以在嵌入式系统或低功耗机器人平台上实时运行。因此,开发一种计算轻量级且能够实现鲁棒控制的人形运动控制算法显得尤为重要。
2025-04-08 19:15:52
448
原创 MATLAB基于转换器 (MMC) 技术和电压源转换器 (VSC) 的高压直流 (HVDC) 模型附Matlab代码
高压直流输电 (HVDC) 作为一种高效、可靠的远距离电力输送方式,在现代电力系统中扮演着日益重要的角色。HVDC 系统能够克服交流输电系统在长距离传输中的固有缺陷,如电容效应、电感效应导致的电压不稳定和功率损耗,以及不同区域电网频率不一致的问题。而换流器作为 HVDC 系统的核心设备,其性能直接决定了整个系统的运行效率和稳定性。
2025-04-08 17:43:53
519
原创 Copula-GLM——用于尖峰分析研究附Matlab代码
尖峰序列分析,作为神经科学的核心组成部分,旨在理解神经元活动的模式,揭示其与行为、认知过程以及神经疾病之间的关联。传统方法主要依赖于点过程模型,例如Poisson模型及其变种,来捕捉尖峰序列的统计特性。然而,这些模型常常假设尖峰的独立性,忽略了神经元之间的复杂依赖关系。此外,标准广义线性模型(GLM)在处理过度离散(overdispersion)和零膨胀(zero-inflation)等尖峰数据常见特征时也显得捉襟见肘。
2025-04-08 17:37:29
598
原创 BP-AdaBoost算法研究附Matlab代码
自适应增强(AdaBoost)算法,作为一种重要的集成学习方法,在分类和回归问题中展现出强大的泛化能力。它通过迭代训练多个弱分类器,并赋予每个弱分类器不同的权重,最终将它们线性组合成一个强分类器。BP神经网络,凭借其强大的非线性拟合能力,在模式识别、函数逼近等领域得到了广泛应用。将两者结合的BP-AdaBoost算法,旨在充分利用BP神经网络的非线性映射能力和AdaBoost的集成优势,以期获得更高的预测精度和更好的鲁棒性。
2025-04-08 16:23:41
380
### 房地产行业深度报告:销售回暖何时传导至投资及新开工?
2025-04-10
### 控制工程基于Matlab的直线一级倒立摆建模与控制方法仿真研究:PID、模糊PID及状态反馈控制性能对比
2025-04-10
【数控加工领域】基于模型参考自适应控制的主轴负载自适应技术:提高伺服系统精度与鲁棒性支持主轴的
2025-04-10
【计算机视觉】基于OpenCV的指纹图像处理与增强:多方向Gabor滤波及细化算法实现
2025-04-10
由于提供的文档内容似乎是损坏的或以非文本格式编码(如二进制或压缩文件内容),无法从中提取有意义的信息进行总结
2025-04-10
【无人机仿真】低空强风扰环境下固定翼无人机Tube内精确跟踪三维航路的ESO与MPC约束管理系统设计
2025-04-09
### 数字营销2025年亚太服饰与护肤品牌全球数字广告投放洞察:市场趋势与品牌案例分析述 本报告
2025-04-09
### 【广告与文化】全球广告对文化塑造的影响及品牌参与文化构建的机会分析广告与文化之间的
2025-04-08
### 2024 Facebook广告和营销报告 - 维卓述 这份报告
2025-04-08
### 2023中国互联网广告数据报告解读:行业发展、技术创新与政策规范、行业发展概况
2025-04-08
机械工程基于五杆机构轨迹综合与仿真的B样条插值及遗传算法优化设计:实现预设轨迹与杆组优化
2025-04-08
【电力系统仿真】含高比例分布式光伏的10kV配电网仿真分析:光伏与储能接入对电压偏移及有功损耗影响研究
2025-04-08
铁路运输基于模型预测控 制的重载列车动力学建模与仿真:长大下坡道空气制动及电牵引力优化设计了重载列车
2025-04-08
数学建模基于Caputo分数阶导数的非线性问题正反问题求解及误差分析:数值方法与理论证明文档的主要内容
2025-04-08
【火灾疏散算法】基于蚁群与遗传算法融合的火灾疏散路径优化:心理恐慌模型及火灾现场系数的应用
2025-04-07
【厦门市优秀创业项目资助】基于嵌入式注塑优化控制终端的技术研发与市场应用:创业项目资助申请材料及评审标准
2025-04-05
【电气工程领域】基于小波时频和GoogleNet的风电机组齿轮箱故障诊断研究:结合深度学习与迁移学习技术提升故障检测准确性
2025-04-05
【电力系统仿真】基于Pandapower的电网平衡与故障模拟:电力系统潮流计算及连锁故障分析系统实现以下要素:
2025-04-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅