✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
聚变反应堆是通过核聚变反应释放巨大能量的新型能源装置。等离子体是聚变反应的关键介质,其参数测量对于反应堆的稳定运行至关重要。FMCW 雷达是一种非接触式测量手段,具有高精度、高分辨率的优点,在等离子体测量中得到广泛应用。
FMCW 雷达原理
FMCW 雷达的工作原理是发射连续波信号,并通过频率调制实现测距。接收信号与发射信号进行混频,产生一个与距离成正比的差频信号。通过测量差频信号的频率或相位,即可得到目标的距离信息。
等离子体测量中的 FMCW 雷达
在聚变反应堆中,等离子体温度、密度和流速等参数对反应效率有重要影响。FMCW 雷达可以测量这些参数,为反应堆的控制和优化提供依据。
-
**温度测量:**等离子体温度与雷达信号的散射强度相关。通过测量散射强度,可以推算出等离子体的温度。
-
**密度测量:**等离子体密度与雷达信号的相位延迟相关。通过测量相位延迟,可以计算出等离子体的密度。
-
**流速测量:**等离子体流速与雷达信号的频率偏移相关。通过测量频率偏移,可以得到等离子体的流速。
相关 DSP 模型
FMCW 雷达信号的处理需要用到各种 DSP 模型,包括:
-
**距离变换:**将差频信号转换为距离信息。
-
**谱分析:**分析差频信号的频谱,提取温度和密度信息。
-
**相位估计:**估计差频信号的相位,计算流速信息。
应用实例
FMCW 雷达技术已成功应用于多个聚变反应堆项目中,例如:
-
**ITER:**国际热核聚变实验堆,使用 FMCW 雷达测量等离子体密度和流速。
-
**EAST:**中国实验性先进超导托卡马克,使用 FMCW 雷达测量等离子体温度和流速。
结论
FMCW 雷达是一种有效的等离子体测量手段,具有高精度、高分辨率和非接触式的优点。通过结合先进的 DSP 模型,FMCW 雷达可以准确测量等离子体温度、密度和流速等关键参数,为聚变反应堆的稳定运行和优化提供重要支撑。
📣 部分代码
'gui_OutputFcn', @main_OutputFcn, ...
'gui_LayoutFcn', [], ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
end
function main_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
end
% --- Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
% Get default command line output from handles structure
varargout{1} = handles.output;
end
% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类