✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
车道线检测是自动驾驶系统中一项至关重要的技术,它可以帮助车辆感知道路环境并做出相应的驾驶决策。传统的车道线检测方法主要依赖于图像处理技术,但随着计算机视觉技术的不断发展,机器视觉技术在车道线检测领域展现出巨大的潜力。本文将介绍基于机器视觉实现视频车道线检测的原理、算法和应用。
原理
机器视觉车道线检测的原理是利用计算机视觉技术从视频图像中提取车道线信息。计算机视觉技术是一种让计算机像人一样“看”和“理解”图像的技术,它通过图像处理、特征提取和模式识别等算法来分析图像中的内容。
在车道线检测中,计算机视觉技术首先对视频图像进行预处理,包括图像增强、降噪和边缘检测。然后,提取车道线的特征,如边缘、纹理和颜色。最后,通过模式识别算法对提取的特征进行分类,识别出车道线。
算法
基于机器视觉的车道线检测算法主要分为两类:基于边缘检测的算法和基于机器学习的算法。
-
基于边缘检测的算法:这类算法通过边缘检测技术提取车道线的边缘,然后使用霍夫变换或其他几何变换来拟合车道线。代表性的算法包括Canny边缘检测算法和霍夫变换算法。
-
基于机器学习的算法:这类算法利用机器学习技术训练模型来识别车道线。代表性的算法包括卷积神经网络(CNN)和支持向量机(SVM)。
应用
基于机器视觉的车道线检测技术在自动驾驶系统中具有广泛的应用,包括:
-
车道保持辅助系统(LKAS):LKAS系统利用车道线检测技术来保持车辆在车道内行驶,防止车辆偏离车道。
-
自适应巡航控制系统(ACC):ACC系统利用车道线检测技术来保持车辆与前车的安全距离,实现自动巡航。
-
自动紧急制动系统(AEB):AEB系统利用车道线检测技术来检测车辆是否偏离车道,并在必要时触发紧急制动。
优势
基于机器视觉的车道线检测技术相对于传统方法具有以下优势:
-
鲁棒性强:机器视觉技术可以处理各种复杂的路况,如光线变化、遮挡和路面不平整。
-
精度高:机器视觉技术可以准确地检测车道线,即使车道线模糊或不完整。
-
实时性好:机器视觉技术可以实时处理视频图像,满足自动驾驶系统的实时要求。
展望
随着计算机视觉技术的不断发展,基于机器视觉的车道线检测技术将继续得到提升。未来,该技术将朝着以下方向发展:
-
多传感器融合:将车道线检测技术与其他传感器(如雷达和激光雷达)融合,提高检测精度和鲁棒性。
-
深度学习:利用深度学习技术训练更强大的模型,提高车道线检测的性能。
-
端到端检测:开发端到端的车道线检测算法,直接从视频图像中输出车道线位置。
结论
基于机器视觉实现视频车道线检测是一种高效、鲁棒且实时的技术,在自动驾驶系统中具有广泛的应用。随着计算机视觉技术的不断发展,该技术将继续得到提升,为自动驾驶系统提供更可靠和准确的车道线检测能力。
📣 部分代码
function isPlayerOpen = visualizeSensorResults(frame, sensor, sensorOut,...
intOut, closePlayers)
% 打开主要输入
leftEgoBoundary = sensorOut.leftEgoBoundary;
rightEgoBoundary = sensorOut.rightEgoBoundary;
locations = sensorOut.vehicleLocations;
xVehiclePoints = sensorOut.xVehiclePoints;
bboxes = sensorOut.vehicleBoxes;
% 打开其他数据
birdsEyeViewImage = intOut.birdsEyeImage;
birdsEyeConfig = intOut.birdsEyeConfig;
vehicleROI = intOut.vehicleROI;
birdsEyeViewBW = intOut.birdsEyeBW;
% 鸟瞰图中,可视化左右边界
birdsEyeWithOverlays = insertLaneBoundary(birdsEyeViewImage, leftEgoBoundary , birdsEyeConfig, xVehiclePoints, 'Color','Red');
birdsEyeWithOverlays = insertLaneBoundary(birdsEyeWithOverlays, rightEgoBoundary, birdsEyeConfig, xVehiclePoints, 'Color','Green');
% 常规视图中可视化左右边界
frameWithOverlays = insertLaneBoundary(frame, leftEgoBoundary, sensor, xVehiclePoints, 'Color','Red');
frameWithOverlays = insertLaneBoundary(frameWithOverlays, rightEgoBoundary, sensor, xVehiclePoints, 'Color','Green');
frameWithOverlays = insertVehicleDetections(frameWithOverlays, locations, bboxes);
imageROI = vehicleToImageROI(birdsEyeConfig, vehicleROI);
ROI = [imageROI(1) imageROI(3) imageROI(2)-imageROI(1) imageROI(4)-imageROI(3)];
% 突出显示包含异常值的候选车道点
birdsEyeViewImage = insertShape(birdsEyeViewImage, 'rectangle', ROI); % show detection ROI
birdsEyeViewImage = imoverlay(birdsEyeViewImage, birdsEyeViewBW, 'blue');
% Display the results
frames = {frameWithOverlays, birdsEyeViewImage, birdsEyeWithOverlays};
persistent players;
if isempty(players)
frameNames = {'Lane marker and vehicle detections', 'Raw segmentation', 'Lane marker detections'};
players = helperVideoPlayerSet(frames, frameNames);
end
update(players, frames);
% Terminate the loop when the first player is closed
isPlayerOpen = isOpen(players, 1);
if (~isPlayerOpen || closePlayers) % close down the other players
clear players;
end
end
⛳️ 运行结果
🔗 参考文献
[1]吕亚运.基于机器视觉的车道线偏移检测与预警系统设计与实现[D].安徽工程大学,2016.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类