ASFSSA-VMD多策略改进的麻雀搜索算法优化变分模态分解

✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击主页 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

摘要: 变分模态分解 (Variational Mode Decomposition, VMD) 作为一种新型的自适应信号分解方法,在非线性非平稳信号处理中展现出强大的优势。然而,VMD 的分解性能高度依赖于惩罚因子 k 和模态数 K 的选择,其最优参数的确定通常需要依赖于经验或耗时的尝试性搜索。针对这一问题,本文提出了一种基于改进麻雀搜索算法 (Sparrow Search Algorithm, SSA) 优化的 VMD 方法,即 ASFSSA-VMD。该方法将自适应因子引入 SSA,提升其全局搜索能力和收敛速度;并结合改进的策略,进一步增强算法的寻优精度和效率,最终实现对 VMD 参数 k 和 K 的高效寻优。通过仿真实验和实际应用,验证了 ASFSSA-VMD 方法在信号分解方面的有效性和优越性。

关键词: 变分模态分解 (VMD); 麻雀搜索算法 (SSA); 参数优化; 自适应因子; 信号分解

1. 引言

随着科学技术的飞速发展,各种复杂的非线性非平稳信号在各个领域中大量涌现,例如机械故障诊断、生物医学信号处理、地震信号分析等。如何有效地对这些信号进行分解和分析,提取其中的有用信息,成为一个重要的研究课题。传统的信号分解方法,如经验模态分解 (Empirical Mode Decomposition, EMD) 和小波变换等,在处理某些复杂信号时存在模态混叠、端点效应等问题。近年来,VMD 作为一种新的自适应信号分解方法,凭借其良好的抗噪性和自适应性,受到了广泛的关注。

VMD 通过迭代寻找一系列有限带宽模态的最佳估计,将输入信号分解为若干个具有物理意义的本征模态函数 (Intrinsic Mode Function, IMF)。然而,VMD 的分解效果严重依赖于惩罚因子 k 和模态数 K 的选择。参数 k 控制模态带宽,参数 K 决定分解的模态个数。这两个参数的选取直接影响到分解结果的准确性和有效性。目前,确定 VMD 最优参数的方法主要有经验判断法、试错法和一些启发式优化算法。经验判断法主观性较强,试错法耗时费力,效率低下。因此,寻求一种高效、准确的 VMD 参数优化方法至关重要。

麻雀搜索算法 (SSA) 作为一种新兴的元启发式优化算法,因其结构简单、易于实现、收敛速度快等优点而备受青睐。然而,SSA 也存在一些不足,例如容易陷入局部最优,收敛精度不高。为了克服这些缺点,本文提出了一种改进的 SSA 算法 (ASFSSA),并将其应用于 VMD 参数优化。

2. 改进麻雀搜索算法 (ASFSSA)

标准 SSA 算法在搜索后期容易陷入局部最优,收敛精度较低。为了解决这个问题,本文从以下几个方面对 SSA 算法进行了改进:

  • 引入自适应因子: 在 SSA 的发现者和加入者位置更新公式中引入自适应因子,使其随着迭代次数的增加而动态调整搜索步长。在迭代初期,自适应因子较大,有利于全局搜索;在迭代后期,自适应因子较小,有利于局部搜索,从而提高算法的寻优精度。自适应因子的设计考虑了算法的当前迭代次数和最大迭代次数,保证了算法的平衡性。

  • 改进的发现者更新策略: 标准 SSA 中的发现者更新策略过于简单,容易导致算法过早收敛。本文对发现者的更新策略进行了改进,使其在搜索过程中能够更有效地探索搜索空间,避免陷入局部最优。改进策略引入了 Lévy 飞行机制,增强了算法跳出局部最优的能力。

  • 精英策略: 为了进一步提高算法的寻优精度,本文引入了精英策略。在每次迭代结束后,将当前最优解保存下来,并在下一次迭代中优先考虑精英解的附近区域,提高算法收敛到全局最优解的概率。

3. ASFSSA-VMD 算法框架

ASFSSA-VMD 算法将改进的麻雀搜索算法应用于 VMD 参数 k 和 K 的优化。算法的具体步骤如下:

  1. 初始化: 设定种群规模、最大迭代次数、惩罚因子 k 和模态数 K 的搜索范围。随机初始化麻雀种群,每个麻雀个体代表一组 k 和 K 的值。

  2. 适应度函数: 定义适应度函数,用于评价不同参数组合下的 VMD 分解效果。本文采用均方误差 (MSE) 或信噪比 (SNR) 作为适应度函数,目标是最小化 MSE 或最大化 SNR。

  3. ASFSSA 寻优: 利用改进的麻雀搜索算法 (ASFSSA) 对 VMD 参数 k 和 K 进行寻优,找到使适应度函数值最优的参数组合。

  4. VMD 分解: 利用寻优得到的最佳参数 k 和 K 对信号进行 VMD 分解。

  5. 结果分析: 分析 VMD 分解结果,评价算法的有效性和优越性。

4. 仿真实验与结果分析

为了验证 ASFSSA-VMD 算法的有效性,本文进行了仿真实验。实验采用多个具有不同特性的模拟信号和实际信号,并将 ASFSSA-VMD 算法与标准 SSA-VMD、PSO-VMD 等算法进行对比。实验结果表明,ASFSSA-VMD 算法在信号分解精度、收敛速度和鲁棒性方面均具有明显的优势。

5. 结论

本文提出了一种基于 ASFSSA 优化的 VMD 信号分解方法,即 ASFSSA-VMD。该方法通过引入自适应因子和改进的更新策略,有效地提高了 SSA 算法的全局搜索能力和收敛精度。仿真实验结果表明,ASFSSA-VMD 算法能够有效地确定 VMD 的最优参数,提高信号分解的精度和效率,为非线性非平稳信号处理提供了一种新的有效方法。未来的研究方向可以考虑将 ASFSSA-VMD 应用于更复杂的信号处理任务,例如故障诊断、目标识别等。 此外,还可以探索更先进的优化算法来进一步提升 VMD 参数优化的性能。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值