✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源危机和环境问题的日益严峻,构建清洁、高效、可持续的能源系统已成为时代发展的迫切需求。综合能源系统 (Integrated Energy System, IES) 通过多种能源形式的协同供应与协调利用,显著提升能源利用效率和系统运行灵活性,成为能源领域的研究热点。本文将围绕包含光热电站 (Concentrated Solar Power, CSP)、有机朗肯循环 (Organic Rankine Cycle, ORC) 和电转气 (Power-to-Gas, P2G) 的综合能源系统,深入探讨其优化调度策略,旨在寻求提升系统经济性和环境友好性的有效途径。
首先,需要理解这三种技术的特点及其在IES中的作用。光热电站利用聚光器将太阳辐射聚焦到接收器,加热工质产生高温蒸汽驱动汽轮机发电。与光伏发电相比,光热电站具有储热能力,能够平滑发电波动,提供更加稳定的电力输出。有机朗肯循环是一种利用低温热源发电的技术,其工质为有机物质,沸点较低,能够有效利用工业余热、地热等低品位热能。在IES中,ORC可以将光热电站产生的多余热能或者其他工业余热转化为电能,提高能源利用效率。电转气技术将电能转化为氢气或甲烷等气体燃料,实现电力与气体能源的灵活转换,解决可再生能源的间歇性问题,并可为天然气管网提供清洁燃料,促进能源系统的低碳化转型。
将这三种技术集成到综合能源系统中,可以构建一个能源供应多样化、能量梯级利用、系统运行灵活的复杂系统。然而,如何有效地调度这些单元,以达到经济性和环境效益的最佳平衡,是优化调度面临的关键挑战。优化调度目标通常包括:最小化系统运行成本(燃料成本、运行维护成本等)、最大化可再生能源利用率、降低碳排放量等。而约束条件则涵盖:电力平衡约束、热力平衡约束、设备运行约束(功率上下限、爬坡速率等)、燃料供应约束等。
针对这种复杂的IES,优化调度策略的设计需要考虑以下几个关键方面:
1. 模型构建与算法选择:
构建精确的数学模型是实现有效优化的前提。对于光热电站,需要考虑太阳辐射强度、聚光器效率、储热罐容量、汽轮机特性等因素。对于ORC,需要考虑工质特性、换热器效率、膨胀机特性等因素。对于P2G,需要考虑电解槽效率、甲烷化反应效率、气体储存容量等因素。此外,还需建立能量平衡方程,保证电力、热力和气体在系统内的供需平衡。
优化算法的选择至关重要。传统的线性规划 (Linear Programming, LP) 和混合整数线性规划 (Mixed-Integer Linear Programming, MILP) 能够有效求解目标函数为线性,约束条件为线性或整数线性问题的优化模型。然而,实际系统中存在大量非线性因素,例如光热电站的发电功率与太阳辐射强度之间的非线性关系,ORC的发电功率与热源温度之间的非线性关系等。因此,需要采用非线性规划 (Nonlinear Programming, NLP) 或混合整数非线性规划 (Mixed-Integer Nonlinear Programming, MINLP) 来处理这些非线性问题。
此外,还可以采用启发式算法,如遗传算法 (Genetic Algorithm, GA)、粒子群优化算法 (Particle Swarm Optimization, PSO) 等。这些算法具有全局搜索能力,能够有效避免陷入局部最优解,但求解速度相对较慢。近年来,基于机器学习的优化算法也逐渐兴起,例如利用神经网络预测系统负荷,利用强化学习优化调度策略,为IES的优化调度提供了新的思路。
2. 调度策略设计:
调度策略的设计需要综合考虑各种因素,包括:
- 预测信息的利用:
准确的负荷预测、光伏发电功率预测、光热发电功率预测等信息是制定合理调度计划的基础。可以利用历史数据,结合机器学习等技术,提高预测精度。
- 储能系统的优化运行:
光热电站的储热系统和P2G的气体储存系统是重要的灵活性资源,能够平滑可再生能源的波动,缓解供需矛盾。调度策略需要充分利用这些储能系统的充放电特性,实现削峰填谷,降低系统运行成本。
- 经济性和环境效益的协调:
经济性和环境效益是优化调度的两个重要目标,需要综合考虑。例如,在可再生能源充足时,可以优先利用可再生能源发电,降低化石燃料消耗,减少碳排放。在可再生能源不足时,可以适当增加化石燃料发电,保证电力供应的可靠性。
- 响应需求侧管理 (Demand Response, DR):
需求侧管理通过引导用户调整用电行为,能够有效平滑负荷曲线,降低峰值负荷,提高系统运行效率。调度策略可以考虑将需求侧管理纳入优化模型,实现供需两侧的协同优化。
3. 案例分析与仿真验证:
理论研究需要结合实际案例进行验证。可以选取具有代表性的IES进行仿真分析,例如,结合具体的光热电站、ORC和P2G参数,以及实际的负荷数据和气象数据,构建仿真模型,验证优化调度策略的有效性。通过仿真分析,可以评估不同调度策略的经济性和环境效益,并对调度策略进行改进和完善。
4. 未来发展趋势:
未来IES的优化调度将朝着以下几个方向发展:
- 多能源系统互联互通:
随着能源互联网的发展,IES将与其他能源系统互联互通,形成更大的能源网络。优化调度需要考虑多个能源系统之间的协调运行,实现资源共享和互补,提高能源利用效率。
- 数字化和智能化:
大数据、云计算、人工智能等技术将广泛应用于IES的优化调度。利用大数据分析,可以挖掘系统运行规律,提高预测精度。利用云计算,可以实现大规模数据的存储和处理。利用人工智能,可以开发智能化的调度算法,提高系统运行效率。
- 动态优化调度:
传统的优化调度通常是离线进行的,即在系统运行前制定调度计划。然而,实际系统中存在各种不确定因素,例如负荷波动、可再生能源出力变化等。动态优化调度能够根据实时数据,对调度计划进行调整,提高系统运行的灵活性和鲁棒性。
- 区块链技术的应用:
区块链技术能够实现能源交易的透明化和去中心化,促进可再生能源的消纳和能源市场的开放。优化调度可以与区块链技术相结合,构建更加公平、高效的能源交易市场。
综上所述,包含光热电站、有机朗肯循环和P2G的综合能源系统优化调度是一项复杂而具有挑战性的任务。通过构建精确的数学模型,选择合适的优化算法,设计合理的调度策略,并结合实际案例进行仿真验证,可以有效地提升系统的经济性和环境效益。未来,随着技术的不断发展,IES的优化调度将朝着多能源系统互联互通、数字化和智能化、动态优化调度和区块链技术应用等方向发展,为构建清洁、高效、可持续的能源系统做出更大的贡献。 进一步的研究可以侧重于考虑不确定性的鲁棒优化,以及针对不同区域能源结构特点的定制化调度策略设计,以提升IES的适应性和竞争力。
⛳️ 运行结果
🔗 参考文献
[1] 崔杨、闫石、仲悟之、王铮、张鹏、赵钰婷.含电转气的区域综合能源系统热电优化调度[J].电网技术, 2020, 44(11):10.DOI:10.13335/j.1000-3673.pst.2019.2468.
[2] 崔杨,闫石,仲悟之,等.含电转气的区域综合能源系统热电优化调度.2020[2025-03-18].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇