✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
各部分原理
- RIME(霜冰优化)
:假设 “霜冰优化” 是一种基于某种仿生或物理原理的优化算法,模拟自然界中类似霜冰形成和变化的过程,对模型的参数进行优化。其核心思想可能是通过不断调整参数,使模型在多变量回归预测任务中达到更好的性能,避免陷入局部最优解,提高模型的泛化能力和预测精度。
- CNN(卷积神经网络)
:CNN 主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在多变量时间序列数据上滑动,提取数据的局部特征,能够捕捉数据在空间维度上的信息。例如,在多变量回归预测中,对于包含多个传感器数据的时间序列,CNN 可以提取不同传感器数据之间的关联特征。池化层则对卷积层的输出进行降维,减少计算量,同时保留重要特征。
- GRU(门控循环单元)
:GRU 是循环神经网络(RNN)的一种变体,通过更新门和重置门来控制信息的流动,能够有效处理时间序列数据中的长期依赖关系。在多变量回归预测中,GRU 可以根据历史数据的时间序列信息,学习到数据的动态变化规律,对未来的变量值进行预测。
- Attention(注意力机制)
:注意力机制能够使模型在处理多变量时间序列数据时,自动学习不同时间步和不同变量之间的重要性权重。通过计算注意力分数,模型可以聚焦于对回归预测结果影响较大的信息,抑制无关信息的干扰,从而提高预测的准确性。
模型构建
- 数据预处理
:对多变量时间序列数据进行清洗、归一化等操作,使其适合模型训练。例如,将数据标准化到特定的范围,如 [0, 1] 或 [-1, 1],以提高模型的训练效率和稳定性。
- 特征提取
:将预处理后的数据输入到 CNN 中,通过卷积和池化操作提取数据的局部特征。这些特征反映了多变量数据之间的空间关系和局部模式。
- 时序建模
:将 CNN 提取的特征输入到 GRU 中,GRU 根据时间序列信息学习数据的动态变化。GRU 的门控机制能够有效处理长期依赖关系,捕捉数据的时间序列特征。
- 注意力机制应用
:在 GRU 的输出上应用注意力机制,计算不同时间步和变量的注意力分数,对 GRU 的输出进行加权求和,突出重要信息,抑制次要信息。
- RIME 优化
:使用 RIME 算法对整个模型的参数(包括 CNN 的卷积核参数、GRU 的权重、注意力机制的参数等)进行优化,寻找最优的参数组合,进一步提高模型的预测性能。
在多变量回归预测中的优势
- 有效处理多变量数据
:CNN 能够提取多变量数据的空间特征,GRU 可以处理时间序列信息,注意力机制则可以学习不同变量之间的重要性权重,RIME 优化能够找到最优的参数组合,使得模型能够全面地处理多变量时间序列数据,捕捉数据之间的复杂关系。
- 提高预测精度
:通过 RIME 优化和注意力机制,模型可以聚焦于重要信息,避免陷入局部最优,从而提高回归预测的精度,更准确地预测多变量时间序列的未来值。
- 适应性强
:该模型对不同类型的多变量时间序列数据具有较好的适应性,无论是具有复杂空间结构的数据还是具有长期依赖关系的数据,都能够进行有效的建模和预测。
RIME-CNN-GRU-Attention 模型结合了多种技术的优势,在多变量回归预测中具有较高的准确性和适应性,为处理多变量时间序列数据提供了一种有效的方法。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
classdef FlipLayer < nnet.layer.Layer
%% 数据翻转
methods
function layer = FlipLayer(name)
layer.Name = name;
end
function Y = predict(~, X)
Y = flip(X, 3);
end
end
end
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇