✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在工业物联网、金融分析、气象监测等领域,多变量时间序列数据蕴含着丰富的信息,精准预测其未来趋势能为决策提供关键依据。然而,多变量时间序列中复杂的时间依赖、变量间的非线性关系以及数据噪声,使得预测任务极具挑战性。TCN-LSTM-Attention 模型将时间卷积网络(TCN)、长短期记忆网络(LSTM)与注意力机制深度融合,为攻克这些难题提供了全新思路。
一、多变量时间序列预测的困境
多变量时间序列由多个具有时间顺序的变量组成,各变量之间相互影响、相互制约。例如在电力系统中,发电量、用电量、气温、电价等变量交织,不仅存在短期波动,还可能有长期的周期性变化。传统预测方法难以同时处理多变量间的复杂关系和长距离依赖,而单一的深度学习模型也存在局限性,无法充分挖掘数据中的潜在规律,因此需要更强大的模型架构来应对挑战。
二、核心组件:TCN、LSTM 与注意力机制
2.1 TCN:高效捕捉时序特征
时间卷积网络(TCN)通过因果卷积、扩张卷积和残差连接,专为时间序列数据设计。因果卷积确保模型只能利用过去和当前时刻的信息进行预测,符合时间序列的因果逻辑;扩张卷积能在不增加参数数量的情况下,扩大卷积核的感受野,使模型能够捕捉长距离依赖关系;残差连接则解决了深层网络训练时的梯度消失问题,保证网络可以不断加深以提取更复杂的特征。TCN 能够并行处理数据,相比传统循环神经网络,大幅提升了训练效率。
2.2 LSTM:记忆时间序列的关键
长短期记忆网络(LSTM)是循环神经网络(RNN)的改进版本,通过遗忘门、输入门和输出门的门控机制,有效解决了 RNN 中梯度消失和梯度爆炸的问题。遗忘门决定从上一时刻细胞状态中丢弃哪些信息;输入门负责更新细胞状态;输出门基于细胞状态产生当前时刻的输出。这种独特结构让 LSTM 能够选择性地记忆和遗忘信息,尤其擅长处理具有长期依赖关系的时间序列数据,精准捕捉数据的时间动态变化。
2.3 注意力机制:聚焦关键信息
注意力机制模拟人类注意力的分配方式,通过计算输入序列中不同位置的权重,让模型在处理数据时能够聚焦于关键信息。在多变量时间序列预测中,注意力机制可以帮助模型识别不同变量在不同时刻对预测目标的重要程度,避免被无关信息干扰,从而更准确地提取特征,提升预测精度。
三、TCN-LSTM-Attention:优势互补的架构
3.1 模型架构设计
TCN-LSTM-Attention 模型将 TCN、LSTM 和注意力机制有机结合。首先,利用 TCN 对多变量时间序列数据进行初步处理,通过因果卷积和扩张卷积提取数据中的局部和长距离特征,同时利用残差连接保证网络训练的稳定性和高效性。然后,将 TCN 提取的特征输入到 LSTM 中,LSTM 进一步挖掘数据的时间依赖关系,对时间序列的动态变化进行建模。最后,引入注意力机制,对 LSTM 的输出进行加权处理,突出对预测结果影响较大的信息,弱化次要信息,使得模型能够更精准地捕捉变量间的复杂关系,生成更准确的预测结果 。
3.2 融合优势解析
TCN-LSTM-Attention 模型充分发挥了各组件的优势。TCN 的并行计算和长距离依赖捕捉能力,能够快速处理多变量数据并提取全局特征;LSTM 擅长处理时间序列的动态变化,弥补了 TCN 在时间建模上的不足;注意力机制则为模型赋予了 “智能聚焦” 的能力,使模型能够自适应地调整对不同变量和时间步的关注程度。三者协同工作,有效解决了多变量时间序列预测中的复杂问题,相比单一模型或简单组合模型,在预测精度和泛化能力上都有显著提升。
⛳️ 运行结果
📣 部分代码
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
result = xlsread('data.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
or_dim = size(result, 2); % 原始特征+输出数目
kim = 4; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];
end
%% 数据集分析
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇