SVM支持向量机+SHAP特征选择和贡献度计算,Matlab代码实现

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在机器学习的广阔天地里,模型的性能与特征的选取、理解紧密相连。SVM(支持向量机)作为经典的有监督学习算法,在分类和回归任务中表现出色;SHAP(SHapley Additive exPlanations)则是一种强大的模型解释工具,能够量化每个特征对模型输出的贡献。当 SVM 遇上 SHAP,会碰撞出怎样的火花呢?今天就带大家深入了解 SVM 支持向量机结合 SHAP 进行特征选择和贡献度计算的奇妙过程。

一、SVM 与 SHAP 原理速览

1.1 SVM 支持向量机原理

SVM 的核心思想是在特征空间中寻找一个超平面,将不同类别的数据尽可能分开,并且使样本到超平面的间隔最大。对于线性可分的数据,SVM 可以直接找到最优超平面;而对于线性不可分的数据,SVM 通过核函数将数据映射到高维空间,从而在高维空间中找到最优超平面。常见的核函数有线性核、多项式核、径向基核(RBF)等。

SHAP 值的计算方法旨在公平地分配每个特征对预测值的贡献。它考虑了所有可能的特征组合情况,通过计算每个特征加入到特征子集时对预测值的边际贡献,然后对所有可能的特征组合进行平均,从而得到每个特征的 SHAP 值。虽然精确计算 SHAP 值的时间复杂度较高,但在实际应用中,有多种近似计算方法,如 TreeSHAP(适用于树模型)、KernelSHAP(适用于任意模型)等。

二、基于 SHAP 的特征选择

2.1 特征重要性排序

在使用 SVM 进行训练后,我们可以利用 SHAP 计算每个样本中各个特征的 SHAP 值。对于所有样本,将每个特征的 SHAP 值取绝对值后进行平均,得到每个特征的平均 SHAP 绝对值。这个值越大,说明该特征对模型预测结果的影响越大,也就越重要。通过对平均 SHAP 绝对值进行排序,我们可以清晰地看到各个特征的重要程度。

2.2 确定关键特征子集

根据特征重要性排序结果,我们可以设定一个阈值,选取平均 SHAP 绝对值大于该阈值的特征作为关键特征子集。或者,也可以根据特征数量的需求,直接选取排名靠前的若干个特征。例如,我们希望将特征数量减少一半,那么就可以选取平均 SHAP 绝对值排名前一半的特征。

使用关键特征子集重新训练 SVM 模型,不仅可以减少模型的训练时间和计算资源消耗,还能避免因过多无关或冗余特征导致的过拟合问题,从而提高模型的泛化能力和预测性能。

三、SHAP 计算特征贡献度

3.1 单个样本特征贡献度分析

对于单个样本,SHAP 值直观地展示了每个特征对该样本预测结果的贡献。正的 SHAP 值表示该特征使预测值高于基线值,对预测结果有正向推动作用;负的 SHAP 值则表示该特征使预测值低于基线值,对预测结果有负向影响。

例如,在一个客户信用评分的 SVM 模型中,对于某个客户样本,如果 “收入” 特征的 SHAP 值为正且较大,说明该客户的高收入对其获得较高信用评分起到了重要的推动作用;而如果 “负债” 特征的 SHAP 值为负且绝对值较大,说明该客户的高负债拉低了其信用评分。

3.2 整体数据集特征贡献度统计

除了分析单个样本,我们还可以对整个数据集的特征贡献度进行统计。通过计算每个特征在所有样本中的 SHAP 值总和或平均值,可以了解各个特征在整体上对模型预测结果的贡献情况。这有助于我们从宏观层面把握哪些特征是影响模型预测的关键因素,从而为后续的数据收集、特征工程和业务决策提供重要依据。

⛳️ 运行结果

📣 部分代码

warning off             % 关闭报警信息

close all               % 关闭开启的图窗

clear                   % 清空变量

clc                     % 清空命令行

%%  导入数据

result = xlsread('data.xlsx');

%%  数据分析

num_samples = length(result);  % 样本个数

or_dim = size(result, 2);      % 原始特征+输出数目

kim =  4;                      % 延时步长(kim个历史数据作为自变量)

zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集

for i = 1: num_samples - kim - zim + 1

    res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];

end

%%  数据集分析

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值