【BZOJ2111】排列计数(ZJOI2010)-DP+Lucas定理

原创 2018年04月17日 15:36:43

测试地址:排列计数
做法:本题需要用到DP+Lucas定理。
我们发现,若从所有ii/2连边,等同于从所有i2i2i+1连边,这样我们会连出一棵二叉树。不难看出,由n个点组成的这种二叉树的左子树的节点数是固定的,并且它的左右子树也满足这种结构。
按照题目中所给的条件,我们要求的实际上是满足这种结构的大根堆的数目。我们在构造一个大根堆时,一定会先在根上填最大的数值,然后选择一些数值在左子树中按照左子树的某种构造方式构造出左子树,最后再把剩下的数值在右子树中按照右子树的某种构造方式构造出右子树。那么令f(i)i个点的大根堆的数目,l(i)i个点的大根堆中根的左子树大小(这个可以O(n)预处理出来,详见代码),根据乘法原理,我们有状态转移方程:
f(i)=Ci1l(i)f(l(i))f(il(i)1)
那么我们只需要预处理出i!i!的逆元即可算出组合数,这个可以O(n)做到。然而要注意,n可能大于等于p,这时我们不能直接求出p以上数的逆元,需要用Lucas定理来求组合数,即:Cnm%p=Cn/pm/pCn%pm%p%p
这样我们就解决了这一题。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,p,fac[1000010],inv[1000010],fi[1000010];
ll l[1200010],f[1000010];

ll C(int n,int m)
{
    if (n>=p||m>=p) return C(n/p,m/p)*C(n%p,m%p)%p;
    return fac[n]*fi[m]%p*fi[n-m]%p;
}

int main()
{
    scanf("%lld%lld",&n,&p);
    fac[0]=fac[1]=inv[0]=inv[1]=fi[0]=fi[1]=1;
    for(ll i=2;i<=min(n,p);i++)
    {
        fac[i]=fac[i-1]*i%p;
        inv[i]=(p-p/i)*inv[p%i]%p;
        fi[i]=inv[i]*fi[i-1]%p;
    }

    l[1]=0;
    for(int i=2,g=1;i<=n;g<<=1,i+=g)
    {
        for(int j=1;j<=g;j++)
            l[i+j-1]=l[i+j-2]+1;
        for(int j=1;j<=g;j++)
            l[i+g+j-1]=l[i+g+j-2];
    }
    f[0]=1;
    for(int i=1;i<=n;i++)
        f[i]=C(i-1,l[i])*f[l[i]]%p*f[i-l[i]-1]%p;
    printf("%lld",f[n]);

    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Maxwei_wzj/article/details/79975725

bzoj2111【ZJOI2010】Perm 排列计数

DP+Lucas定理
  • AaronGZK
  • AaronGZK
  • 2016-02-12 20:43:41
  • 1134

【bzoj2111】[ZJOI2010]Perm 排列计数

题目的意思就是有多少个大小为n的小根堆 这步转化太神了 f[i]表示用1~i的排列组成的小根堆有多少个 f[n]=C(size[left],n-1)*f[left]*f[right] ...
  • u012288458
  • u012288458
  • 2016-03-01 13:42:51
  • 375

Bzoj2111:[ZJOI2010]Perm 排列计数:树形动态规划+组合数学

题目链接:2111:[ZJOI2010]Perm 排列计数 可以发现这样的一个大于关系构成了一个树结构,而且是一颗线段树式的结构,满足堆性质 设f[i]表示i这个点所代表的子树满足要求的方案数,s...
  • qq_34025203
  • qq_34025203
  • 2016-04-03 16:30:22
  • 329

bzoj 2111: [ZJOI2010]Perm 排列计数 (组合数学+Lucas定理)

2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 1919  Solved: 475 [Sub...
  • clover_hxy
  • clover_hxy
  • 2017-02-15 08:36:50
  • 136

【BZOJ 2111】 [ZJOI2010]Perm 排列计数

发现是完全二叉树~然后dp~
  • Regina8023
  • Regina8023
  • 2015-03-05 21:55:39
  • 796

【bzoj2111】【zjoi2010】【perm排列计数】【dp+Lucas定理】

Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后...
  • sunshinezff
  • sunshinezff
  • 2015-08-31 19:52:15
  • 1572

BZOJ2111 [ZJOI2010]Perm 排列计数

我们把整个序列看成一棵树,x的左儿子是2x,右儿子是2x+1 这样问题就变成了给这棵树标号,儿子的标号必须比父亲大 dp即可 f[i]表示以i为根的子树,在标号集合已经确定的情况下的标号方案数 ...
  • neither_nor
  • neither_nor
  • 2016-12-29 18:36:44
  • 337

BZOJ2111: [ZJOI2010]Perm 排列计数

BZOJ2111根据题目所给信息,要求所有2p_1,p3>p1p_3>p_1,p4>p2p_4>p_2,p5>p2p_5>p_2,p6>p3p_6>p_3,p7>p3p_7>p_3 发现很像一颗二叉...
  • Ep1C_HeReT1c
  • Ep1C_HeReT1c
  • 2017-05-27 11:48:26
  • 157

bzoj2111 [ZJOI2010]Perm 排列计数

题目转化一下题意,求有n个节点的小根堆一共有几种。那么,显然递推了。f[x]=C(x-1,left)*f[x-1-left]*f[left]left表示一个儿子的大小。 显然,记忆化好写很多。要用L...
  • wanherun
  • wanherun
  • 2017-09-10 19:32:46
  • 53

[BZOJ2111][ZJOI2010]Perm 排列计数 && 数学

通过长时间的盯着看 我们可以看出这个序列的大小于关系类似于一个二叉堆 那么我们可以由此dp统计方案  转移方程  son[i] = son[i d[i] = C(son[i]-1, son[i 那么剩...
  • shiyukun1998
  • shiyukun1998
  • 2015-03-31 09:40:29
  • 314
收藏助手
不良信息举报
您举报文章:【BZOJ2111】排列计数(ZJOI2010)-DP+Lucas定理
举报原因:
原因补充:

(最多只允许输入30个字)