【BZOJ3727】Zadanie(PA2014 Final)-思维

测试地址:Zadanie
题目大意: 一棵树,第 i i i个点有 a i a_i ai个人,现在求出了 b i b_i bi,为所有人走到点 i i i的总路程,要求还原 a i a_i ai
做法: 本题需要用到思维。
在我们求 b i b_i bi的时候,我们可以使用换根法,那么我们能不能用换根法,找到 a , b a,b a,b之间的关系呢?
在换根法中,先随便选一个点作为根(这个根不是指换根法中的根,而是为了算法方便而求出的根),把根从点 i i i换到父亲点 j j j b b b会增加 s u m i − ( t o t a l − s u m i ) = 2 s u m i − t o t a l sum_i-(total-sum_i)=2sum_i-total sumi(totalsumi)=2sumitotal,其中 s u m i sum_i sumi为以 i i i为根的子树内所有点的 a i a_i ai之和, t o t a l total total为所有点的 a i a_i ai之和。因此得到等式 b j − b i = 2 s u m i − t o t a l b_j-b_i=2sum_i-total bjbi=2sumitotal
这样类推下去,我们可以得到 n − 1 n-1 n1个等式。但之中有 n n n个未知数,所以我们还需要找到一个条件。我们注意到上面的等式中 b b b都是差的形式,如果我们再多用一个点的 b b b来连接和所有未知数之间的关系,应该就可以解了,这个点就是算法的根 r o o t root root
我们发现, b r o o t b_{root} broot就等于 ∑ i ≠ r o o t s u m i \sum_{i\ne root}sum_i i̸=rootsumi。这可以通过一个简单的贡献变换得出。这样一来我们就有了 n n n个等式,意味着这个方程组可以解了。
怎么解呢?首先当然是算出 t o t a l total total。一开始的 n − 1 n-1 n1个等式都可以化成下面的形式: s u m i = t o t a l + b f ( i ) − b i 2 sum_i=\frac{total+b_{f(i)}-b_i}{2} sumi=2total+bf(i)bi(其中 f ( i ) f(i) f(i)表示 i i i的父亲),于是有:
2 ∑ i ≠ r o o t s u m i = ( n − 1 ) t o t a l + ∑ i ≠ r o o t ( b f ( i ) − b i ) 2\sum_{i\ne root}sum_i=(n-1)total+\sum_{i\ne root}(b_{f(i)}-b_i) 2i̸=rootsumi=(n1)total+i̸=root(bf(i)bi)
又因为 ∑ i ≠ r o o t s u m i = b r o o t \sum_{i\ne root}sum_i=b_{root} i̸=rootsumi=broot,所以 t o t a l total total为:
t o t a l = 2 b r o o t + ∑ i ≠ r o o t ( b i − b f ( i ) ) n − 1 total=\frac{2b_{root}+\sum_{i\ne root}(b_i-b_{f(i)})}{n-1} total=n12broot+i̸=root(bibf(i))
这就可以很轻松地算出来了。进一步地,有了 t o t a l total total后就可以通过前 n − 1 n-1 n1个等式逐一算出每个点的 s u m sum sum了,实际上 t o t a l total total就是根的 s u m sum sum。而从子树和 s u m sum sum恢复 a a a也非常容易了,对于每个点 i i i,对 s u m i sum_i sumi减去它所有儿子的 s u m sum sum即可得到 a i a_i ai。这样我们就解决了这一题,时间复杂度为 O ( n ) O(n) O(n)
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,first[300010]={0},tot=0,fa[300010]={0};
ll a[300010],b[300010],total;
struct edge
{
	int v,next;
}e[600010];

void insert(int a,int b)
{
	e[++tot].v=b;
	e[tot].next=first[a];
	first[a]=tot;
}

void solve(int v)
{
	total+=b[v]-b[fa[v]];
	for(int i=first[v];i;i=e[i].next)
		if (e[i].v!=fa[v])
		{
			fa[e[i].v]=v;
			solve(e[i].v);
		}
}

void finalsolve(int v)
{
	for(int i=first[v];i;i=e[i].next)
		if (e[i].v!=fa[v])
		{
			a[v]-=a[e[i].v];
			finalsolve(e[i].v);
		}
}

int main()
{
	scanf("%d",&n);
	for(int i=1;i<n;i++)
	{
		int u,v;
		scanf("%d%d",&u,&v);
		insert(u,v),insert(v,u);
	}
	for(int i=1;i<=n;i++)
		scanf("%lld",&b[i]);
	
	total=b[1];
	solve(1);
	total/=(ll)(n-1);
	a[1]=total;
	for(int i=2;i<=n;i++)
		a[i]=(total-b[i]+b[fa[i]])>>1;
	finalsolve(1);
	for(int i=1;i<=n;i++)
		printf("%lld ",a[i]);
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值