【BZOJ1432】函数(ZJOI2009)-思维

测试地址:函数
做法: 本题需要用到思维。
如果在 x x x坐标为负无穷时,把函数从下到上编号为 1 1 1~ n n n,那么在向右扫时,一旦遇到一个交点,就表示交的这两个函数上下位置进行交换。因为每两个函数间有且仅有一个交点,且不会有三个函数共点,因此这些交换是先后进行的,且一定是发生在下面的函数编号比上面的函数小时,那么最后在 x x x坐标为正无穷时必定会换为从下到上 n n n ~ 1 1 1的形式。于是现在要求第 k k k层的段数,实际上就是在交换的过程中,从下到上第 k k k个位置上编号的最小变动次数 + 1 +1 +1
根据推理,一个位置上编号最小的变动次数为 min ⁡ ( 2 k − 1 , 2 ( n − k + 1 ) − 1 ) \min(2k-1,2(n-k+1)-1) min(2k1,2(nk+1)1)。首先这两种情况是对称的,因此我们只考虑 k ≤ ( n − k + 1 ) k\le (n-k+1) k(nk+1)的情况,我们肯定考虑把右边最大的 k k k个数挪到左边去,那么最小的交换次数就是,前 k − 1 k-1 k1个数因为要经过那个位置,所以都产生 2 2 2的贡献,而最后一个数正好放在那个位置上,因此只产生 1 1 1的贡献,总贡献就是 2 k − 1 2k-1 2k1了,那么另一种情况只要对称考虑即可。因此答案为 min ⁡ ( 2 k , 2 ( n − k + 1 ) ) \min(2k,2(n-k+1)) min(2k,2(nk+1)) n = k = 1 n=k=1 n=k=1时需要特判,这样我们就非常简单地解决了这一题。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
int n,k;

int main()
{
	scanf("%d%d",&n,&k);
	if (n==1) printf("1");
	else printf("%d",min(2*k,2*(n-k+1)));
	
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值