二、决策树(Decision Tree)

本文介绍了决策树的基本思想、算法举例,以及其优缺点和适用范围。决策树通过评估每个特征来划分数据,寻找最佳划分特征以实现数据分类。在处理过程中,避免过度匹配是关键,信息增益是衡量特征划分数据集效果的重要指标。熵和信息熵的概念也在文中被解释,用于量化信息。
摘要由CSDN通过智能技术生成

二、决策树(Decision Tree)

算法基本思想:根据数据集中数据的特征进行逐步的推理、判断,从而达到分类或预测的目的。决策树属于图解法,因为类似于树的结构,因此成为决策树。常见的决策树算法有ID3、C4.5以及CART。

算法举例:

         在构造决策树时,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。为了找到决定性的特征,划分出最好的结果,我们必须评估每一个特征,完成测试后,原始数据集就被会分为几个数据子集。这些数据子集会分布在第一个决策点的所有分支上。如果某个分支下的数据属于同一类型,则当前无需阅读的垃圾邮件已经正确地划分数据分类,无需进一步对数据集进行分割。如果数据子集内的数据不属于同一类型,则需要根据下一层特征重复划分数据子集,直到所有具有相同类型的数据均在一个数据子集内。

算法的优缺点及适用范围

优点:计算复杂度不高,输入结果易于理解,对中间值的缺失不敏感,可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值