AI英雄 | GAN之父:让机器拥有天赋 我还在对付利用AI作恶的人

本文介绍了GAN(生成对抗网络)的创始人如何面对AI被用于不当行为的挑战,他致力于防止人工智能技术被滥用,同时推动机器学习领域的创新,让机器具备更多创造性的天赋。
摘要由CSDN通过智能技术生成

点击上方蓝字 关注网易智能

为你解读AI领域大公司大事件,新观点新应用



本期嘉宾为伊恩·古德费洛(Ian Goodfellow),他因提出了生成对抗网络而闻名,他被誉为“GAN之父”,甚至被誉为人工智能领域的顶级专家。


资料显示,古德费洛等人于2014年10月在Generative Adversarial Networks中提出了一个通过对抗过程估计生成模型的新框架,框架中同时训练两个模型:捕获数据分布的生成模型G,和估计样本来自训练数据的概率的判别模型D。G的训练程序是将D错误的概率最大化,这个框架对应一个最大值集下限的双方对抗游戏。可以证明在任意函数G和D的空间中,存在唯一的解决方案,使得G重现训练数据分布,而D=0.5。在G和D由多层感知器定义的情况下,整个系统可以用反向传播进行训练。在训练或生成样本期间,不需要任何马尔科夫链或展开的近似推理网络,实验通过对生成的样品的定性和定量评估证明了本框架的潜力。


通过让神经网络互相攻击,伊恩·古德费洛(Ian Goodfellow)创造出强大的人工智能(AI)工具,赋予机器以想象的能力,现在,他和我们其他人必须面对这种工具带来的后果。


2014年的的某个晚上,古德费洛和一名刚刚毕业的博士生共同喝酒庆祝。在的蒙特利尔颇受欢迎的酒吧Les 3 Brasseurs,许多朋友请求他的帮助,因为他们正在开发一个棘手的项目,即可以自己创作图片的电脑。


生成对抗网络的诞生


这些研究人员已经在使用神经网络,即模仿人脑神经网络建立的松散模型算法,作为“生成”模型来创建自己的新数据。但结果往往并不如人意:电脑生成的人脸图像往往是模糊的,或者出现像丢失耳朵这样的错误。


古德费洛的朋友们提出的计划,是对构成照片的元素进行复杂的统计分析,以帮助机器自己创作图像。这就需要大量的数字运算,而古德费洛告诉他们,这根本行不通。


但当他边喝啤酒边思考这个问题时,突然想出了一个主意。如果让两个神经网络对抗会产生什么样的结果?朋友们都对此持怀疑态度,所以当他回到家,女朋友已经睡熟后,他决定试一试。古德费洛在最初的几个小时里进行编码,然后测试了他的软件,没想到第一次就取得了成功。


古德费洛在那个夜晚开发出的技术现在被称为“生成对抗网络”(GAN)。这一技术已经在机器学习领域引发了巨大的兴奋,并将其开发者变成了AI领域的名人。


在过去的几年里,AI研究人员使用一种叫做深度学习的技术取得了令人印象深刻的进展。提供足够图像给深度学习系统,它会从中学习,比如识别一个即将穿越马路的行人。这种方法使得无人驾驶汽车和能驱动Alexa、Siri以及其他虚拟助手的对话技术成为可能。


可是,虽然深度学习可以学会识别事物,但他们并不擅长创造它们。GAN的目标就是赋予机器这种类似于想象的天赋。将来,计算机将会更好地享受原始数据,并计算出它们需要从中学到什么。这样做不仅能让它们绘画或作曲,还将使它们减少对人类的依赖,可以自行学习了解世界及其运作方式。


如今,AI程序员们经常需要告诉机器,在训练数据中到底有什么东西,比如数百万张图片中都有行人过马路的场景。这种方法不仅成本高昂,而且劳动强度相当大。此外,哪怕是稍微偏离了所接受的培训,AI系统处理图像数据时都会遭遇挫折。而在将来,电脑将会更好地处理原始数据,并在不被告知的情况下计算出它们需要学习的内容。


这将标志着AI“无监督学习”的巨大进步。无人驾驶汽车可以在不离开车库的情况下了解许多不同的道路状况,机器人可以预见到繁忙仓库中可能遇到的障碍,而不需要再绕过它。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值