PaddlePaddle实现波士顿房价预测

PaddlePaddle实现波士顿房价预测

AIStudio地址
Github地址

#加载飞桨、Numpy 和相关库
import paddle
import paddle.fluid as fluid               # 飞桨主库
import paddle.fluid.dygraph as dygraph     # 动态图类库
from paddle.fluid.dygraph import Linear
import numpy as np
import random
import os

数据预处理

  数据预处理主要包含五个部分:数据导入、数据形状变换、数据集划分、数据归一化处理、封装 load_data 函数。

# 数据预处理

def load_data():
    # 从文件读取数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=" ")     # 从文本或二进制文件中构造一个数组

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_name = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    # 统计字段个数
    feature_num = len(feature_name)

    # 将原始数据进行reshape, 变成 [N, 14]的形状
    # N = data.shape[0]//feature_num
    data = data.reshape([data.shape[0]//feature_num, feature_num])

    # 将原始数据及拆分为训练集和测试集(8:2)
    ratio = 0.8
    offset = int(data.shape[0]*ratio)
    training_data = data[:offset]
    
    # 计算训练集的max, min, mean
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]

    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的化分
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data



# 查看数据
training_data , test_data = load_data()
print(training_data,test_data)

print("~"*20)

# 查看第一个训练样本数据
x = training_data[:, :-1]
y = training_data[:, -1:]
print(x[0])     #前13个影响因素
print(y[0])     #第14个房价中位数

搭建神经网络

  线性回归模型采用线性激活函数( linear activation )的全连接层 ( fully-connected layer, fc_layer ),因此在飞桨中利用全连接层模型构造线性回归,这样,一个全连接层就可以看作一个简单的神经网络。

  搭建神经网络类似于使用积木搭建宝塔。在飞桨中,网络层(layer)是积木,而神经网络是要搭建的宝塔。我们使用不同的layer进行组合,来搭建神经网络。飞桨建议通过创建Python类的方式完成模型网络的定义,即__init__函数和forward函数。

  forward函数是框架指定实现前向计算逻辑的函数,程序在调用模型实例时会自动执行forward方法。在forward函数中使用的网络层需要在__init__函数中声明。

  定义init函数:在类的初始化函数中声明每一层网络的实现函数。

  定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果。

# 配置网络结构
class Regressor(fluid.dygraph.Layer):
    def __init__(self,name_scope):
        super(Regressor,self).__init__(name_scope)
        name_scope = self.full_name()
        # 定义一层全连接层,输出维度是1, 激活函数为None, 即不使用激活函数
        self.fc = Linear(input_dim = 13, output_dim = 1,act = None)

    # 网络的前向计算函数
    def forward(self,input):
        x = self.fc(input)
        return x


训练配置

  1. 指定运行训练的机器资源:以guard函数指定运行训练的机器资源,表明在with作用域下的程序均执行在本机的CPU资源上。 dygraph.guard 表示在with作用于下的程序会以动态图的模式执行(实时执行)。
  2. 声明模型实例:声明定义好的回归模型Regressor实例,并将模型的状态设置为训练。
  3. 加载训练和测试数据:使用load_data 函数加载训练数据和测试数据。
  4. 设置优化算法和学习率:优化算法采用随机梯度下降SGD,学习率设置为0.01.
# 初始化

with fluid.dygraph.guard():
    '''

        在paddlepaddle中,模型实例有两个状态:train()和eval()。
        训练时要执行正向计算和反向传播梯度两个过程,而预测只需要执行正向计算。
        另外,with fluid.dygraph.guard()创建了飞桨动态图的工作环境,在该环境中完成模型声明、数据转换及模型训练等。

    '''
    # 声明定义好的线性回归模型(Regressor)
    model = Regressor('Regressor')
    model.train()
    # 数据加载
    training_data, test_data = load_data()
    print(training_data[10:20])
    # 定义优化算法,SGD
    # 学习率设置为0.01
    opt = fluid.optimizer.SGD(learning_rate=0.01, parameter_list= model.parameters())

模型训练

  模型训练过程采用内层循环外层循环嵌套的方式。

  内层循环负责整个数据集的一次遍历,采用分批次(batch)方式。Batch的取值会影响模型训练效果:batch过大,会增大内存消耗和计算时间,且效果不会明显提升;batch过小,每个batch的样本数据将没有统计意义。

  内循环四个步骤

  1. 数据准备:将一个批次的数据转变为np.array和内置格式。
  2. 前向计算:将一个批次的样本数据灌入网络中,计算输出结果。
  3. 计算损失函数:以前向计算结果和真实房价作为输入,通过损失函数square_error_cost计算出损失函数值(Loss).
  4. 反向传播: 执行梯度反向传播backward函数,即从后到前逐层计算每一层的梯度,并根据设置的优化算法更新参数opt.minimize。

  外层循环定义遍历数据集的次数,通过参数EPOCH_NUM设置。

# 定义训练过程
with dygraph.guard(fluid.CPUPlace()):
    EPOCH_NUM = 10     # 设置外层循环次数
    BATCH_SIZE = 10    # 设置batch大小
    
    # 定义外层循环
    for epoch_id in range(EPOCH_NUM):
        # 在每轮迭代开始之前,将训练数据的顺序随机打乱
        np.random.shuffle(training_data)
        # 将训练数据进行拆分,每个batch包含10条数据
        mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0,len(training_data),BATCH_SIZE)]

        # 定义内层循环
        for iter_id, mini_batch in enumerate(mini_batches):
            # 获得当前批次训练数据
            x = np.array(mini_batch[:,:-1]).astype('float32')
            # 获得当前批次训练标签(真是房价)
            y = np.array(mini_batch[:,-1:]).astype('float32')
            # 将numpy数据转为飞桨动态图variable形式
            house_features = dygraph.to_variable(x)
            prices = dygraph.to_variable(y)

            # 正向计算
            predicts = model(house_features)

            # 计算损失
            loss = fluid.layers.square_error_cost(predicts, label=prices)
            avg_loss = fluid.layers.mean(loss)
            if iter_id % 20 == 0:
                print("epoch:{}, iter:{}, loss is:{}".format(epoch_id,iter_id,avg_loss.numpy()))
            
            #反向传播
            avg_loss.backward()
            # 最小化loss, 更新参数
            opt.minimize(avg_loss)
            # 清除梯度
            model.clear_gradients()

    fluid.save_dygraph(model.state_dict(),"LR_model")


保存并测试模型

  首先我们将模型当前的参数数据model.state_dict()保存在文件中(通过参数指定保存的文件LR_model),以备预测或校验的程序调用。

# 定义飞桨动态图工作环境
with fluid.dygraph.guard():
    # 保存模型参数,文件为LR_model
    fluid.save_dygraph(model.state_dict(),'LR_model')
    print("模型保存成功,模型参数保存在LR_model中")

模型保存成功,模型参数保存在LR_model中

  然后可以对模型进行测试,测试过程与在应用场景中使用模型的过程一致,主要分为如下三个步骤:

(1)、配置模型预测的机器资源;

(2)、将训练好的模型参数加载到模型。加载完毕后,需要将模型的状态调整为evaluation(校验)。

(3)、将待预测的样本特征输入模型中,打印输出的预测结果。

  通过load_one_example函数从数据集中抽出一条样本作为测试样本。

# 读取测试样本
def load_one_example(data_dir):
    f = open(data_dir, 'r')
    datas = f.readlines()
    # 选择倒数第十条数据用于测试
    tmp = datas[-10]
    tmp = tmp.strip().split()
    one_data = [float(v) for v in tmp]

    # 对数据进行归一化处理
    for i in range(len(one_data)-1):
        one_data[i] = (one_data[i] - avg_values[i]) / (max_values[i] - min_values[i])
    
    data = np.reshape(np.array(one_data[:-1]), [1,-1]).astype(np.float32)
    label = one_data[-1]
    return data, label

# 测试模型
with dygraph.guard():
    # 参数为保存模型参数的文件地址
    model_dict, _ = fluid.load_dygraph("LR_model")
    model.load_dict(model_dict)
    model.eval()

    # 参数为数据集的文件地址
    test_data, label = load_one_example('./work/housing.data')
    # 将数据转为动态图的variable格式
    test_data = dygraph.to_variable(test_data)
    results = model(test_data)

    # 对结果进行反归一化处理
    results = results*(max_values[-1] - min_values[-1]) +avg_values[-1]
    print("Inference result is {}, the corresponding label is {}".format(results.numpy(),label))

Inference result is [[14.326102]], the corresponding label is 19.7
paddlepaddle可以用来实现LSTM(Long Short-Term Memory)来进行股票预测。LSTM是一种深度学习模型,能够有效地处理时间序列数据,并且在处理长序列时具有优势。 首先,我们需要准备股票数据作为输入。可以使用paddlepaddle提供的数据处理模块,例如paddle.data等,来导入股票数据集,并进行预处理。预处理包括数据清洗、特征提取等,以便用于LSTM模型的训练和预测。 然后,我们可以使用paddlepaddle中的LSTM模型来建立股票预测模型。使用paddlepaddle的深度学习框架,我们可以方便地搭建和配置LSTM网络结构。LSTM网络通常由多个LSTM层组成,每个层中都有多个LSTM单元。这些层和单元的数量可以根据任务需求进行设置。 在模型搭建完成后,我们可以使用paddlepaddle提供的数据迭代器来对数据进行批量化处理,并将数据输入到LSTM模型中进行训练。训练的过程中,我们可以使用合适的损失函数(例如均方误差)来衡量模型的预测结果与真实值之间的差异。 完成模型的训练后,我们可以使用该模型对新的股票数据进行预测。通过将新数据输入到训练好的LSTM模型中,可以得到预测结果。这些预测结果可以用于股票的分析和决策制定。 总之,使用paddlepaddle实现LSTM来进行股票预测是一种有效的方法。paddlepaddle提供了丰富的深度学习模型和工具,可以方便地进行模型搭建、训练和预测。通过LSTM模型,我们可以更好地处理时间序列数据,从而提高股票预测的准确性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas左右

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值