【学习笔记】Week1_Recurrent Neural Networks_Notation

1、动机举例

    · x-<t> 来表示输入序列的每一个单词(从 1 开始索引)

    · y-<t> 表示 x-<t> 对应的预测标签

    · T_x 表示输入序列中的长度(单词个数)

    · T_y 表示输出序列的长度

    · T_x 与 T_y 可以相等也可以不等

    · X-(i)<t> 表示训练集 X 中的第 i 个样本中的第 t 个单词

    · T_x-(i) 表示训练集 X 中的第 i 个样本的长度

    · y-(i)<t> 表示第 i 个训练样本对应的输出序列中的第 t 个单词

    · T_y-(i) 表示第 i 个训练样本对应的输出序列的长度


2、如何表示单个词

    · 首先要建立一个 Dictionary(词典,向量)/ Vocabulary,将所要表示的所有词都列出来、每个词对应一个索引(从 1 开始)

    · 词典维数一般为 3W ~ 5W、也可以很大

    · 制作词典的方法:1)浏览训练集,选择最常出现的一部分词(例如 10000 个);或者找在线词典。2)使用 One-Hot Representation(独热编码)来表示每个单词,每个词向量均为 10000 维



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/MegaZhan/article/details/80346511
个人分类: Sequence Models
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

【学习笔记】Week1_Recurrent Neural Networks_Notation

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭