一文清晰理解表示学习
今天阅读邱锡鹏教授的蒲公英书,对表示学习有了更清楚的认知。表示学习概念局部表示分布式表示小结概念为了提高机器学习系统的准确率,需要将输入信息转换为有效的特征,或者更一般性地称为表示(Representation)。如果有一种算法可以自动地学习出有效的特征,并提高最终机器学习模型的性能,那么这种学习就可以叫作表示学习(Representation Learning)表示学习的关键是解决语义鸿沟问题。语义鸿沟问题是指输入数据的底层特征和高层语义信息之间的不一致性和差异性。局部表示以颜色为例,以不同的





