1、整数类型
(1)、可正可负,没有取值范围限制
pow(x,y)函数:计算xy,想算多大算多大
>>> pow(2,100)
1267650600228229401496703205376
>>> pow(2,pow(2,15))
1415461031044954789001553…
(2)、4种进制表示形式
- 十进制:1010, 99, -217
- 二进制,以0b或0B开头:0b010, -0B101
- 八进制,以0o或0O开头:0o123, -0O456
- 十六进制,以0x或0X开头:0x9a, -0X89
2、浮点数类型
(1)、与数学中实数的概念一致
- 带有小数点及小数的数字
- 浮点数取值范围和小数精度都存在限制,但常规计算可忽略
- 取值范围数量级约-10308至10308,精度数量级10-16
(2)、浮点数间运算存在不确定尾数,不是bug
例如:
>>> 0.1 + 0.3
0.4
>>> 0.1 + 0.2
0.30000000000000004
不确定尾数
0.1+0.2
结果无限接近0.3,但可能存在尾数
这时,若想要比较浮点数运算结果,可使用round函数
>>> 0.1 + 0.2 == 0.3
False
>>> round(0.1+0.2, 1) == 0.3
True
-
round(x, d):对x四舍五入,d是小数截取位数- 浮点数间运算及比较用round()函数辅助
- 不确定尾数一般发生在10 -16 左右,round()十分有效
(3)、浮点数可以采用科学计数法表示
使用字母e或E作为幂的符号,以10为基数,格式如下:
<a>e<b> 表示 a*10b
- 例如:4.3e-3 值为0.0043 9.6E5 值为960000.0
3、数值运算操作符
4、数值运算函数
3,4 见 pdf3.1