Python数据分析课--第五节 Matplotlib---散点图

散点图

散点图介绍

散点图用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式
特点:判断变量之间是否存在数量关联趋势,表示离群点(分布规律)
在这里插入图片描述

散点图绘制

散点图通过scatter()函数绘制
• plt.scatter(x,y) # 以默认的形状颜色等绘制散点图

练习1

假设通过爬虫你获取到了长沙2019年4,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温和随时间变化的某种规律
a = [11,17,16,11,12,11,12,13,10,14,8,13,12,15,14,17,18,21,16,17,30,14,15,15,15,19,21,22,22,22,23]
b = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,15,10,11,13,12,13,6]

from matplotlib import pyplot as plt


y_4 = [11,17,16,11,12,11,12,13,10,14,8,13,12,15,14,17,18,21,16,17,30,14,15,15,15,19,21,22,22,22,23]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,15,10,11,13,12,13,6]

x = range(1,32) # 4 和10 月 共享 x 31天


# 绘制图形
plt.scatter(x,y_4)
plt.scatter(x,y_10)

# 优化 4,10月份 数据分开


plt.show()

优化 4,10月份 数据分开

from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname=r"C:\Windows\Fonts\STXINGKA.TTF", size=14) # 找到自带的字体格式

# 优化 4,10月份 数据分开
y_4 = [11,17,16,11,12,11,12,13,10,14,8,13,12,15,14,17,18,21,16,17,30,14,15,15,15,19,21,22,22,22]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,15,10,11,13,12,13,6]

x_4 = range(1,31) # 4 月份
x_10 = range(51,82) # 10月份 间隔了 20  20+30---30+31+20


# 绘制图形
plt.scatter(x_4,y_4)
plt.scatter(x_10,y_10)

# 刻度 四月1号.....10月1号.....
x_t = list(x_4) + list(x_10)
# print(x_t)
x_l = ["四月{}号".format(i) for i in x_4] + ["十月{}号".format(i-50) for i in x_10]
plt.xticks(x_t[::4],x_l[::4],rotation=45,fontproperties=font)
# print(x_l)
plt.yticks(fontproperties=font)

plt.show()

在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页