算法设计与分析第二章作业

一、以伪代码描述最大字段和的分治算法

一共有三种可能:

1.在[1, n/2]这个区域内在  2.[n/2+1, n]这个区域内  3.起点位于[1,n/2],终点位于[n/2+1,n]内

所以可以以n/2为终点向左移动求出leftmax,以n/2+1为起点往右移动求出rightmax,第三种情况是leftmax+rightmax

2.代码:

int max(int a[],int l,int r)
{
    if(right==left)  
    {
        if(a[left]>0)
            return a[left];
        else
            return 0;
    }

    int mid=(l+r)/2;
    int lMax=max(a,left,mid);
    int rMax=max(a,mid+1,right);
    int sum=0;
    int leftmax=0;
    for(int i=mid;i>=left;i--)  
    {  
        sum+=a[i];  
        if(sum>leftmax)  
            leftmax=sum;  
    }
    sum=0;
    int rightmax=0;
    for(int i=mid+1;i<=right;i++)  
    {  
       sum+=a[i];  
       if(sum>rightmax)  
         rightmax=sum;  
    }  
    int ret=leftmax+rightmax;  
    if(ret<lMax)  
        ret= lMax;  
    if(ret< rMax)  
        ret=rMax;  
    return ret; 
}

3.时间复杂度为O(nlogn)

二、分治法的体会和思考:

分治法是将一个很难解决的大问题拆成一个个规模较小的相同问题,这样能将这个难解决的问题变的简单一点。分治法的步骤是首先将问题分解成一些易解决的子问题,第二步利用递归解决子问题,第三步将子问题合并。让我最能感受到分治法的妙处的是归并排序,归并排序能划分成相同数量的集合进行排序最后将子集合并。分治法也能减少时间复杂度。分治法也需要一定的练习才能掌握,我还需要更加深入的思考和练习才能掌握分治法。

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论 1

打赏作者

徐浩森1

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值