Flink和spark的对比

本文对比了Spark Streaming的Micro Batching模式和Flink的Native Streaming模式。Spark Streaming通过微批处理实现低延时,但存在延迟瓶颈和不支持乱序处理。Flink的Native Streaming模式提供更低延迟,支持乱序处理,其Dataflow模型和运行时架构更专注于流计算。Spark的Structured Streaming试图改进延迟问题,但与Flink相比仍存在差距。
摘要由CSDN通过智能技术生成

Spark Streaming vs Flink

两者最重要的区别(流和微批)

(1). Micro Batching 模式(spark)

Micro-Batching计算模式认为"流是批的特例",流计算就是将连续不断的微批进行持续计算,如果批足够小那么就有足够小的延时,在一定程度上满足了99%的实时计算场景。那么那1%为啥做不到呢? 这就是架构的魅力,在Micro-Batching模式的架构实现上就有一个自然流数据流入系统进行攒批的过程,这在一定程度上就增加了延时。具体如下示意图:
在这里插入图片描述
从上面可以看到是把输入的数据, 分成微小的批次, 然后一个批次一个批次的处理, 然后也是一片批次的输出. 很显然Micro-Batching模式有其天生的低延时瓶颈,但任何事物的存在都有两面性,在大数据计算的发展历史上,最初Hadoop上的MapReduce就是优秀的批模式计算框架,Micro-Batching在设计和实现上可以借鉴很多成熟实践。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better~Me

谢谢小可爱,希望你每天都开心~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值