2024 研究生数学建模竞赛(A题)建模秘籍|风电场有功功率优化调度|文章代码思路大全

铛铛!小秘籍来咯!
小秘籍团队独辟蹊径,运用S-N曲线法,能量守恒,启发式算法,鲁棒优化理论等强大工具,构建了这一题的详细解答哦! 为大家量身打造创新解决方案。小秘籍团队,始终引领着建模问题求解的风潮。

抓紧小秘籍,我们出发吧~

完整内容可以在文章末尾领取!
在这里插入图片描述

问题一

第一个问题是:建立数学模型,实现对风机的两种不同元件(主轴和塔架)任意时段累积疲劳损伤程度量化指标的实时计算。要求提供的方法要合理有效,计算时间小于1.00秒,并且所得计算结果能正确反映元件累积疲劳损伤程度。同时,需要展示所计算结果与参考结果(雨流计数法所得结果)的相似程度,并列出100台风机的所有200件元件的每秒疲劳损伤值。
要解决第一个问题,即对风机的主轴和塔架在任意时段的累积疲劳损伤程度进行量化评估,我们可以采用基于Palmgren-Miner基于S-N曲线的线性累积损伤理论的建模方法。该方法可以在实时计算中实现有效的累积疲劳损伤值计算。

1. 建立数学模型

1.1. 数据与参数设定
  • F ( t ) F(t) F(t)为任意时刻 t t t的载荷(主轴扭矩或者塔架推力);
  • N F ( S ) N_F(S) NF(S)为S-N曲线给出的,在应力幅值 S S S下能够承受的最大循环次数;
  • Δ t \Delta t Δt为时间窗口(这里设定为1秒)。
1.2. 雨流计数法的简化实现

在实时计算中,我们可以简化雨流计数法,利用以下步骤估算当前应力幅值下的循环次数:

  1. 确定当前应力幅值:使用滑动窗口法计算最近 Δ t \Delta t Δt时间内的应力幅值(如主轴扭矩或塔架推力):
    S ( t ) = max ⁡ t − Δ t ≤ τ ≤ t F ( τ ) − min ⁡ t − Δ t ≤ τ ≤ t F ( τ ) S(t) = \max_{t-\Delta t \leq \tau \leq t} F(\tau) - \min_{t-\Delta t \leq \tau \leq t} F(\tau) S(t)=tΔtτtmaxF(τ)tΔtτtminF(τ)

  2. 得到累积循环次数:在时间段 Δ t \Delta t Δt内,根据当前的载荷周期性分析得到的循环次数需要实时更新。

  3. 计算当前时刻的量化指标
    n F ( t ) = { n F ( t − 1 ) + 1 if  S ( t ) > S l n F ( t − 1 ) otherwise n_F(t) = \begin{cases} n_F(t-1) + 1 & \text{if } S(t) > S_l \\ n_F(t-1) & \text{otherwise} \end{cases} nF(t)={nF(t1)+1nF(t1)if S(t)>Slotherwise
    上面的公式中, S l S_l Sl是当前应力水平的阈值(可由风机的历史数据或当前状态决定)。

1.3. 累积疲劳损伤的计算

定义每个元件的累积疲劳损伤值为:
D F ( t ) = ∑ i = 1 N n F , i ( t ) N F , i ( S i ) D_F(t) = \sum_{i=1}^{N} \frac{n_{F,i}(t)}{N_{F,i}(S_i)} DF(t)=i=1NNF,i(Si)nF,i(t)
其中, D F ( t ) D_F(t) DF(t)为当前时刻 t t t的损伤值, N F , i ( S i ) N_{F,i}(S_i) NF,i(Si)为对应于 S i S_i Si的S-N曲线的最大循环次数。

2. 实时计算算法

为了达到实时计算并确保计算时间小于1秒,我们可以使用以下步骤:

  1. 对100台风机及其200个元件进行初始化,并定期(每秒)计算新数据。
  2. 在每次计算时,更新 F ( t ) F(t) F(t)值,通过简单的循环次数更新(使用前一个时刻的结果更有效保证实时性)。
  3. 对每个风机的主轴和塔架分别进行累积疲劳损伤计算,并输出。

3. 展示与参考结果比较

在输出所有风机的每秒疲劳损伤值后,需要用以下指标来比较和展示模型的效果:

  • 将计算出的 D F ( t ) D_F(t) DF(t)与基于雨流计数法的结果进行对比;
  • 计算其余差以量化相似程度:
    Error = ∑ j = 1 N t ∣ D F , j calculated ( t ) − D F , j rainflow ( t ) ∣ \text{Error} = \sum_{j=1}^{N_t} |D_{F,j}^{\text{calculated}}(t) - D_{F,j}^{\text{rainflow}}(t)| Error=j=1NtDF,jcalculated(t)DF,jrainflow(t)

4. 实现与测试

  1. 确保CPU计算时间在1秒内:使用高效的循环与判断逻辑,确保每次计算迅速完成。
  2. 展示结果:包括表格与图形展示累积疲劳损伤的发展趋势。

通过上述模型与步骤,可以实现快速且有效的评估风机部件的疲劳损伤程度,进而辅助风电场的运维与安全管理。
在这里插入图片描述

为了解决第一个问题,我们需要建立一个数学模型来实时计算风机主轴和塔架的累计疲劳损伤值。这里我们将使用Palmgren-Miner线性累积损伤理论,并结合S-N曲线来量化疲劳损伤。

1. 建立数学模型

首先,回顾疲劳损伤的计算公式。根据Palmgren-Miner理论,某一时刻的累计疲劳损伤值 D F D_F DF可以表示为:

D F = n F N F D_F = \frac{n_F}{N_F} DF=NFnF

其中, n F n_F nF为对应应力幅值下的实际循环次数, N F N_F NF为该应力水平下材料的极限循环次数(从S-N曲线获得)。

我们将根据测得的载荷(主轴扭矩和塔架推力)数据,采用雨流计数法的简化算法对各个风机的每秒数据进行分析,以计算每个时刻的累计疲劳损伤。

1.1 应力幅值的计算

对于每一段时间数据,我们要计算每秒的应力幅值 F t i F^i_t Fti,可以将每台风机在时刻 t t t的推力和扭矩分别表示为 T t i T^i_t Tti F t i F^i_t Fti:

  1. 主轴的应力幅值 F t o r q u e i F^i_{torque} Ftorquei:
    F t o r q u e i = T t i F^i_{torque} = T^i_t Ftorquei=Tti

  2. 塔架的应力幅值 F t h r u s t i F^i_{thrust} Fthrusti:
    F t h r u s t i = F t i F^i_{thrust} = F_t^i Fthrusti=Fti

1.2 累积疲劳损伤计算

对于每一秒钟 t t t,我们计算以下累积疲劳损伤值 D F i , j ( t ) D_F^{i, j}(t) DFi,j(t),其中 i i i表示风机的编号, j j j为元件类型(主轴或塔架):

D F i , j ( t ) = D F i , j ( t − 1 ) + n F i , j ( t ) N F i , j D_F^{i, j}(t) = D_F^{i, j}(t-1) + \frac{n_F^{i,j}(t)}{N_F^{i,j}} DFi,j(t)=DFi,j(t1)+NFi,jnFi,j(t)

其中 n F i , j ( t ) n_F^{i,j}(t) nFi,j(t)是当前时刻 F t i , j F^{i,j}_t Fti,j的循环次数, N F i , j N_F^{i,j} NFi,j由S-N曲线获得。

1.3 实时计算

为了保证计算时间小于1.00秒,我们采用以下简化的步骤:

  • 使用预先定义好的应力幅值和极限循环次数(S-N曲线中的数据),避免在实时计算中进行复杂的插值。
  • 对于每个风机的100秒数据,每秒只需通过累加和查表操作,可以在O(1)的时间复杂度下完成更新。

2. 结果展示

结果应包括每台风机在每一秒的累计疲劳损伤值,并将其与基于雨流计数法所得结果进行比较。我们可以使用以下代码示例来输出结果(伪代码):

# 初始化损伤值
D_F = np.zeros((100, 2)) # 100台风机,2个元件

for time in range(100):    # 对于每一秒
    for i in range(100):   # 对于每台风机
        # 读取当前时刻的扭矩和推力
        T_current = read_torque(i, time)
        F_current = read_thrust(i, time)
        
        # 计算当前的应力幅值
        stress_torque = T_current
        stress_thrust = F_current
        
        # 查找S-N曲线得到的N_F
        N_F_torque = get_NF_for_stress(stress_torque, 'torque')
        N_F_thrust = get_NF_for_stress(stress_thrust, 'thrust')
        
        # 统计循环次数
        cyc_count_torque = count_cycles(stress_torque)
        cyc_count_thrust = count_cycles(stress_thrust)
        
        # 更新累计损伤值
        D_F[i, 0] += (cyc_count_torque / N_F_torque)
        D_F[i, 1] += (cyc_count_thrust / N_F_thrust)

# 输出结果
save_results(D_F)

结论与独特见解

本模型结合了简单的计算、累积疲劳损伤的实时更新与监测。通过在每次采样后仅更新一次损伤值,并借助S-N曲线查表,不仅降低了计算的复杂度.
要建立一个数学模型,实现对风机的主轴和塔架两种元件在任意时段的累积疲劳损伤程度的实时计算,首先可以基于Palmgren-Miner线性累积损伤理论进行建模。

1. 数学模型构建

假设 t t t时间段内主轴和塔架的载荷(扭矩和推力)分别为 M ( t ) M(t) M(t) F ( t ) F(t) F(t)。依据风机的材料属性及S-N曲线,确定疲劳损伤计算公式。

1.1 S-N曲线

S-N曲线定义为应力幅值 S S S与最大循环次数 N F N_F NF之间的关系。通常,S-N曲线可以用多项式或幂律公式近似:

N F ( S ) = C S − m N_F(S) = C S^{-m} NF(S)=CSm

这里 C C C m m m是材料常数。我们可以通过实验获得相应材料的 C C C m m m值。

1.2 疲劳损伤计算

基于雨流计数法的逆向思想,我们希望在每个小时间间隔内进行累积疲劳损伤的计算。对于任意的应力幅值 S ( t ) S(t) S(t),经过 N ( t ) N(t) N(t)次数的循环,则该时刻的疲劳损伤可由以下公式给出:

D ( t ) = ∑ i = 1 n D i ( t ) = ∑ i = 1 n n i ( t ) N F ( S i ) D(t) = \sum_{i=1}^{n} D_i(t) = \sum_{i=1}^{n} \frac{n_i(t)}{N_F(S_i)} D(t)=i=1nDi(t)=i=1nNF(Si)ni(t)

其中:

  • D ( t ) D(t) D(t)是时刻 t t t的总疲劳损伤;
  • D i ( t ) D_i(t) Di(t)是应力水平 i i i的疲劳损伤;
  • n i ( t ) n_i(t) ni(t)是应力幅值为 S i S_i Si的循环次数;
  • N F ( S i ) N_F(S_i) NF(Si)是经过S-N曲线计算得到的每种应力幅值对应的疲劳寿命。

在实际应用中,使用雨流计数法可以对已知加载数据进行有效分段,并统计出各个幅值下的循环次数 n i n_i ni。这里需要实现一个计算函数来适应实时数据流。

1.3 累积疲劳损伤

综合以上,任意时刻的疲劳损伤计算可以总结为:

D F ( t ) = ∫ 0 t ∑ i = 1 k n i ( τ ) N F ( S i ) d τ D_F(t) = \int_0^t \sum_{i=1}^{k} \frac{n_i(\tau)}{N_F(S_i)} d\tau DF(t)=0ti=1kNF(Si)ni(τ)dτ

对于每个时间段按 s s s秒的极限进行近似计算:

D F ( t ) ≈ ∑ j = 0 ⌊ t / s ⌋ D F ( t j ) ⋅ s D_F(t) \approx \sum_{j=0}^{\lfloor t/s \rfloor} D_F(t_j) \cdot s DF(t)j=0t/sDF(tj)s

2. 计算时间优化

为保证计算时间小于1秒,针对每个时间点的计算应尽可能使用向量化操作,利用快速统计方法减少重复计算,同样采用累积和的方法来更新。

3. 示例计算结果展现

在仿真与实际数据结合的情况下,展示每秒的疲劳损伤值,并与雨流计数法所得结果进行对比,以确保其相似性。可以使用归一化差值分析其相似程度:

相似度 = 1 − ∑ t = 1 T ∣ D F , 模型 ( t ) − D F , 雨流 ( t ) ∣ T \text{相似度} = 1 - \frac{\sum_{t=1}^{T} |D_{F,\text{模型}}(t) - D_{F,\text{雨流}}(t)|}{T} 相似度=1Tt=1TDF,模型(t)DF,雨流(t)

4. 实施输出

最终的计算结果可输出成表格,包含100台风机每秒的疲劳损伤值。在数据收集与处理之后使用绘图工具展示每个风机两种元件在100秒内的疲劳增长曲线,以便于分析和比较。

整体模型总结

通过上述模型构建与计算,可以实时跟踪风机的累积疲劳损伤程度,有效地帮助优化风电场的运营策略,同时降低维护成本和事故风险。
针对第一个问题,我们需要创建一个数学模型来实时计算风机主轴和塔架的累积疲劳损伤。下面是基于Palmgren-Miner理论和S-N曲线法来实现的Python代码。这段代码会接收主轴扭矩和塔架推力数据,计算每秒的疲劳损伤值,并将结果与参考结果进行比较。
在这里插入图片描述

首先,我们需要定义函数来计算S-N曲线以及累积疲劳损伤值,并将其与参考结果进行比较。

import numpy as np
import pandas as pd

# S-N curve data for a hypothetical material (this should be replaced with actual S-N curve data)
# For example, stress amplitudes (S) and corresponding cycles to failure (N_f)
S_n_curve_data = {
    50: 100000,  # Stress amplitude: 50 MPa, cycles to failure: 100000
    70: 10000,   # Stress amplitude: 70 MPa, cycles to failure: 10000
    90: 1000,    # Stress amplitude: 90 MPa, cycles to failure: 1000
}

def calculate_fatigue_damage(stress_amplitude, S_n_curve):
    # Find the closest S_n value
    closest_S = min(S_n_curve.keys(), key=lambda x: abs(x - stress_amplitude))
    N_f = S_n_curve[closest_S]
    
    # Calculating damage D_F = n_f/N_f
    # Here n_f is the number of cycles at the given stress level, we assume 1 cycle for each second
    n_f = 1
    D_F = n_f / N_f
    return D_F

def rainflow_counting(data):
    # Apply rainflow counting algorithm (a simplified version)
    # For demonstration purposes, we'll lump stress into simple ranges based on peaks
    damage_list = []
    for i in range(len(data)-1):
        stress_amplitude = abs(data[i+1] - data[i])
        if stress_amplitude > 0:
            damage = calculate_fatigue_damage(stress_amplitude, S_n_curve_data)
            damage_list.append(damage)
    return sum(damage_list)

# Simulated load data for 100 wind turbines
# Assuming we have 100 sets of torque (tension) and thrust (compression) data
torque_data = np.random.randint(50, 100, (100, 100))  # Random torque values between 50 to 100 MPa
thrust_data = np.random.randint(10, 50, (100, 100))   # Random thrust values between 10 to 50 MPa

# Store the damage values for each wind turbine's components
damage_results = pd.DataFrame(columns=['Turbine_ID', 'Time', 'Torque_Damage', 'Thrust_Damage'])

# Loop through each wind turbine and each second for 100 seconds
for t in range(100):
    for turbine_id in range(100):
        torque_damage = rainflow_counting(torque_data[turbine_id])
        thrust_damage = rainflow_counting(thrust_data[turbine_id])
        
        # Append to results
        见完整

在这个代码中,我们首先定义了S-N曲线和计算疲劳损伤的必要函数,然后对100台风机的主轴和塔架的应力数据进行处理。我们假设这两个数据集是随机生成的,但在实际应用中,您应该将它们替换为实际的测量数据。

最终,程序会计算每台风机每秒的疲劳损伤并将结果以数据框的形式存储,最后保存到CSV文件中进行后续分析。请确保将实际的S-N数据与代码中给出的内容进行替换和校验。

问题二

第二个问题是:“利用风速及功率估算塔架推力和主轴扭矩”。具体要求是建立一个数学模型,根据风机所处位置的风速条件和功率参考值,估算当前风机所承受的推力(塔架推力)和扭矩(主轴扭矩)。模型需要结合受力分析、能量守恒或其他合理思路进行建立,并且要求能够估算出各个风机在任意时刻的应力/扭矩值,并与提供的参考值进行对比。最终输出的数据需要列入附件中,并需要统计估算值与参考值之差的平方和,以展示计算结果与实际数据的对比结果。
为了解决“利用风速及功率估算塔架推力和主轴扭矩”这一问题,我们需要根据风机的工作原理,结合能量守恒和力学分析的方法,建立一个数学模型,以估算当前风机所承受的塔架推力和主轴扭矩。

模型建立

  1. 基础概念

    • 风能是风机的主要输入,风机在风速为 V w i V_w^i Vwi 时所能转换的最大功率 P m a x i P_{max}^i Pmaxi 为:
      KaTeX parse error: Double superscript at position 56: …t A \cdot V_w^i^̲3 \cdot C_p
      其中:
    • ρ \rho ρ 为空气密度(kg/m³)
    • A A A 为风轮的面积(m²), A = π ⋅ ( D 2 ) 2 A = \pi \cdot \left( \frac{D}{2} \right)^2 A=π(2D)2 D D D 为风轮直径
    • C p C_p Cp 为功率系数,通常取值在 0.3 0.3 0.3 0.5 0.5 0.5 之间。
  2. 塔架推力( F t i F_t^i Fti

    • 风机所承受的塔架推力可以通过推力公式给出:
      F t i = P r e f i V w i F_t^i = \frac{P_ref^i}{V_w^i} Fti=VwiPrefi
      其中 P r e f i P_ref^i Prefi 为风机的有功功率参考值。
  3. 主轴扭矩( T s i T_s^i Tsi

    • 主轴扭矩与推力和转速之间的关系可以通过以下公式表示:
      T s i = P r e f i ω i T_s^i = \frac{P_ref^i}{\omega_i} Tsi=ωiPrefi
      其中 ω i \omega_i ωi 为风机的角速度,通常根据风机的转速( N N N)与其直径 D D D 得到:
      ω i = 2 π N 60 \omega_i = \frac{2 \pi N}{60} ωi=602πN
      角速度的单位是 rad/s。
  4. 整体模型
    综合以上的公式,我们可以建立如下的模型:

    • 通过风速和有功功率参考值估算塔架推力和主轴扭矩的步骤为:
      1. 计算风机所能达到的最大功率 P m a x i P_{max}^i Pmaxi
      2. 计算塔架推力 F t i F_t^i Fti
      3. 计算主轴扭矩 T s i T_s^i Tsi

数据输出

将每台风机 i i i 在所有时间点的估算值列入到附件中。需要同时计算并保存每个风机的塔架推力 F t i F_t^i Fti 和主轴扭矩 T s i T_s^i Tsi

误差计算

为了解估算结果的准确性,我们将计算估算值与参考值之间的差异并统计平方和:
误差平方和 = ∑ i = 1 N t ( F t i − F t , r e f i ) 2 + ∑ i = 1 N t ( T s i − T s , r e f i ) 2 \text{误差平方和} = \sum_{i=1}^{N_t} \left( F_t^i - F_{t,ref}^i \right)^2 + \sum_{i=1}^{N_t} \left( T_s^i - T_{s,ref}^i \right)^2 误差平方和=i=1Nt(FtiFt,refi)2+i=1Nt(TsiTs,refi)2
其中 F t , r e f i F_{t,ref}^i Ft,refi T s , r e f i T_{s,ref}^i Ts,refi 为提供的参考值。

总结

通过上述的建模过程,我们能够基于给定的风速和有功功率参考值有效地估算风机所承受的塔架推力和主轴扭矩,并与实际的数据进行对比分析,最终达到优化风电场运维和管理的目的。
在这里插入图片描述

为了解决第二个问题,即利用风速及功率估算塔架推力和主轴扭矩,我们可以通过建立一定的物理模型来完成这个任务。下面是具体的思路和模型建立过程:

1. 模型假设

  • 假设风机为一个理想的能量转化装置,能够将风能转换为电能,同时在此过程中会对结构件(主轴和塔架)施加相应的力和扭矩。
  • 理论上,当风速为额定风速时,风机的功率输出达到最大值,此时不会产生额外的推力和扭矩。

2. 风能与功率关系

风机所承受的推力( F t i F_t^i Fti)与风速( V w i V_w^i Vwi)和功率( P r e f i P_{ref}^i Prefi)之间的关系可以通过能量守恒来推导。根据风能方程,我们有:

P = 1 2 ρ A C p V 3 P = \frac{1}{2} \rho A C_p V^3 P=21ρACpV3

其中:

  • ρ \rho ρ 为空气密度 (kg/m^3),通常取 1.225 kg/m^3。
  • A A A 为风机的扫风面积 (m^2), A = π ( D / 2 ) 2 A = \pi (D/2)^2 A=π(D/2)2 D D D 为风机直径。
  • C p C_p Cp 为功率系数,表示风机的能量转化效率,通常取值在 0.4 - 0.5 之间。

当风速低于额定值时,风机输出的功率为:

P r e f i = 1 2 ρ A C p ( V w i ) 3 P_{ref}^i = \frac{1}{2} \rho A C_p (V_w^i)^3 Prefi=21ρACp(Vwi)3

3. 塔架推力与主轴扭矩的计算公式

塔架推力

塔架推力可由风力与重力平衡关系得到,可表示为:

F t i = P r e f i V w i F_t^i = \frac{P_{ref}^i}{V_{w}^i} Fti=VwiPrefi

在超过额定风速时,加上一个的附加推力部分(通常为安全系数的一部分):

F t i = F t , m a x + k ( V w i − V r a t e d ) 2 F_t^i = F_{t,max} + k (V_w^i - V_{rated})^2 Fti=Ft,max+k(VwiVrated)2

其中 F t , m a x F_{t,max} Ft,max 为塔架承载的最大推力, k k k 为与速度相关的比例常数, V r a t e d V_{rated} Vrated 为额定风速(11.2 m/s)。

主轴扭矩

主轴扭矩可以使用以下关系获得:

T s i = P r e f i ω T_s^i = \frac{P_{ref}^i}{\omega} Tsi=ωPrefi

其中 ω \omega ω 为风机的转速(rad/s),通常与风速有关系:

ω = k r p m ⋅ V w i \omega = k_{rpm} \cdot V_w^i ω=krpmVwi

k r p m k_{rpm} krpm 为一种常数,与风机的设计有关。

4. 模型实现及结果输出

通过以上公式,可以针对每个风机建立一个计算模型,输入= V w i V_w^i Vwi, P r e f i P_{ref}^i Prefi,直接计算出塔架推力 F t i F_t^i Fti 和主轴扭矩 T s i T_s^i Tsi。计算结果需要与提供的参考值进行对比,并统计估算值与参考值之差的平方和:

Sum of Squares = ∑ i = 1 N t ( T s i − T s , r e f i ) 2 + ∑ i = 1 N t ( F t i − F t , r e f i ) 2 \text{Sum of Squares} = \sum_{i=1}^{N_t} (T_s^i - T_{s, ref}^i)^2 + \sum_{i=1}^{N_t} (F_t^i - F_{t, ref}^i)^2 Sum of Squares=i=1Nt(TsiTs,refi)2+i=1Nt(FtiFt,refi)2

5. 独特见解

  • 在实际应用中,考虑到风速的随机性和风电场的地理特性,或许可以针对不同机组模块化设计推力和扭矩计算模型,以提高灵活性和准确性。
  • 此外,通过优化和拟合过程中的数据,可以不断更新 C p C_p Cp值,从而提高模型的适用性。
  • 另外,更进一步的研究可以考虑不同风速和功率条件下对推力和扭矩分配的动态响应特性,以便对风机的响应进行实时监控。

以上就是第二个问题的解答过程和结果分析。
为了估算风机的塔架推力(F_t)和主轴扭矩(T_s),我们可以利用风速(V_w)与功率参考值(P_ref)之间的关系,结合动量守恒和能量守恒原理来建立数学模型。

模型建立

  1. 推力计算
    塔架推力是风机所受的风力与风机的气动性能有关,可以利用动量守恒来分析。根据动量守恒,风机吸收的风能对应的推力可以定量计算如下:

设直接作用于风轮的有效风速为 V w V_w Vw,功率参考值为 P r e f P_ref Pref,风机的气动效率为 η \eta η,则根据能量守恒:
P = F t ⋅ V w P = F_t \cdot V_w P=FtVw

其中, P P P 为风机的发电功率,可以由功率参考值表示为:
P r e f = η F t V w P_ref = \eta F_t V_w Pref=ηFtVw

从中我们可以推导出塔架推力:
F t = P r e f η V w F_t = \frac{P_ref}{\eta V_w} Ft=ηVwPref

  1. 主轴扭矩计算
    主轴扭矩可以基于推力与风机叶片的设计情况进行估算。该扭矩来自于主轴所需克服的阻力和转动惯量。我们可以直接采用以下模型来估算主轴扭矩:

设风轮半径为 R R R,叶片与风向的攻角(angle of attack)使得产生的推力的利于扭矩的产生,主轴扭矩可以表示为:
T s = R ⋅ F t T_s = R \cdot F_t Ts=RFt

这样,我们有了主轴扭矩的表达式:
T s = R ⋅ P r e f η V w T_s = R \cdot \frac{P_ref}{\eta V_w} Ts=RηVwPref

最终模型

综上所述,最终的模型可以表示为:

F t = P r e f η V w 和 T s = R ⋅ F t F_t = \frac{P_ref}{\eta V_w} \quad \text{和} \quad T_s = R \cdot F_t Ft=ηVwPrefTs=RFt

代入塔架推力的表达式,可以得到主轴扭矩的完整计算公式:
T s = R ⋅ P r e f η V w T_s = R \cdot \frac{P_ref}{\eta V_w} Ts=RηVwPref

输出结果

  1. 计算步骤

    • 对每台风机,利用以上公式计算塔架推力 F t F_t Ft 和主轴扭矩 T s T_s Ts
    • 将计算结果与附件中提供的参考值进行对比,计算参考值与估算值的平方和:

    S = ∑ i = 1 n ( T s i − T s r e f , i ) 2 + ∑ i = 1 n ( F t i − F t r e f , i ) 2 S = \sum_{i=1}^{n} (T_s^i - T_s^{ref,i})^2 + \sum_{i=1}^{n} (F_t^i - F_t^{ref,i})^2 S=i=1n(TsiTsref,i)2+i=1n(FtiFtref,i)2

    其中, T s r e f , i T_s^{ref,i} Tsref,i F t r e f , i F_t^{ref,i} Ftref,i 分别为第 i i i 台风机的参考扭矩和推力值, n n n 为风机的数量。

通过上述方法,可以以计算出的塔架推力和主轴扭矩的数据输出到附件中,以及计算平方差和,展示估算结果与实际数据的对比情况。
为了估算风机的塔架推力和主轴扭矩,我们可以基于风速和功率参考值,通过风动力学和能量守恒的原理来建立模型。以下是一个基本的Python代码示例,用于估算风机在任意时刻的塔架推力 (F_t) 和主轴扭矩 (T_s)。同时,该代码也会计算估算值与给定参考值之间的差的平方和。

import numpy as np
import pandas as pd

# 假设的数据输入
# V_w: 风速 (m/s)
# P_ref: 功率参考值 (W)
# 定义常量
rho = 1.225  # 空气密度 (kg/m^3)
A = 100  # 风机的 swept area (m^2),这里假设为100 m^2,实际值应根据风机参数确定。

def estimate_f_t_and_t_s(V_w, P_ref):
    # 计算风机的理论功率
    P_th = 0.5 * rho * A * V_w**3  # 理论功率 (W)
    
    # 计算塔架推力 (F_t)
    # 当风速达到额定值时,推力达到最大,假设额定时的推力与功率相关
    if V_w >= 11.2:  # 假设11.2 m/s是额定风速
        F_t = (P_ref / V_w)  # 推力与功率和风速的关系
    else:
        F_t = 0  # 风速低于额定值时,假设推力为0
    
    # 计算主轴扭矩 (T_s)
    # 主轴扭矩与推力和风速的关系
    T_s = F_t * (A / (2 * np.pi)) # 假设主轴扭矩与风机面积成正比

    return F_t, T_s

# 示例数据
# 用于估算的风速和功率参考值假设
V_w = np.array([10, 11, 12, 13, 14])  # 风速 (m/s)
P_ref = np.array([4000000, 5000000, 5200000, 5400000, 5200000])  # 功率参考值 (W)

# 结果存储
results = []

# 估算每个风机的塔架推力和主轴扭矩
for wind_speed, power_ref in zip(V_w, P_ref):
    F_t, T_s = estimate_f_t_and_t_s(wind_speed, power_ref)
    results.append({'V_w': wind_speed, 'P_ref': power_ref, 'F_t': F_t, 'T_s': T_s})

# 转换为DataFrame
results_df = pd.DataFrame(results)

# 输出结果
print(results_df)

# 假设参考值
# 假设的是估算值和参考值之间的差的平方和
reference_F_t = np.array([50000, 60000, 62000, 63000, 65000])  # 假设参考推力 (N)
reference_T_s = np.array([150000, 160000, 170000, 175000, 180000])  # 假设参考扭矩 (N*m)

# 计算误差平方和
F_t_diff_squared_sum = np.sum((results_df['F_t'] - reference_F_t) ** 2)
T_s_diff_squared_sum = np.sum((results_df['T_s'] - reference_T_s) ** 2)

print("推力估算误差平方和:", F_t_diff_squared_sum)
print("扭矩估算误差平方和:", T_s_diff_squared_sum)

上面这段代码实现了以下功能:

  1. 输入和输出:定义输入的风速和功率参考值,以及输出的塔架推力和主轴扭矩。
  2. 塔架推力和扭矩计算:通过风速和功率参考值计算塔架推力和主轴扭矩。
  3. 结果对比:与假设的参考值进行比较,并计算估算值与参考值之差的平方和。
    在这里插入图片描述

问题三

有功调度优化问题构建与实时求解

该问题要求参赛者根据特定的优化目标和约束条件,建立优化模型以求解最佳的有功功率分配策略。具体要求包括:

  1. 目标是尽可能降低场站内所有风机的总体疲劳损伤程度,同时定义单台风机的疲劳损伤包括主轴疲劳损伤和塔架疲劳损伤两部分。
  2. 所有风机的有功参考值之和必须等于电网调度指令 (P_t)。
  3. 各风机的有功参考值不得超过风机的额定功率(5MW)。
  4. 确保各风机的有功优化分配值与平均分配方法结果的差值不超过1MW。
  5. 提供目标函数、目标权重值及其设计思路,并在每秒进行一次功率分配,展示计算结果的实时性。
  6. 展示约束条件的满足情况,以及优化前后结果的对比,比如各风机的累积疲劳损伤情况等。

该问题旨在在复杂的工程实际需求中,找到有效的、有针对性的调度方案。
为解决有功调度优化问题,我们可以建立一个数学模型,主要目标是最小化风电场内所有风机的总体疲劳损伤程度。在此问题中,我们需要重点关注风机的主轴疲劳损伤和塔架疲劳损伤,并通过定义合理的目标函数和约束条件求解优化分配策略。

1. 优化目标

作为优化目标,我们定义整体的疲劳损伤程度函数 D D D为:

D = ∑ i = 1 N t ( D s i + D t i ) D = \sum_{i=1}^{N_t} (D_{s}^i + D_{t}^i) D=i=1Nt(Dsi+Dti)

其中:

  • N t N_t Nt 是风机的总数(在本题中为100)。
  • D s i D_{s}^i Dsi 是第 i i i台风机主轴的疲劳损伤值。
  • D t i D_{t}^i Dti 是第 i i i台风机塔架的疲劳损伤值。

2. 目标函数

我们将目标函数定义为最小化整体疲劳损伤:

min ⁡ D = ∑ i = 1 N t ( D s i + D t i ) \min D = \sum_{i=1}^{N_t} (D_{s}^i + D_{t}^i) minD=i=1Nt(Dsi+Dti)

3. 约束条件

根据题目要求,我们需要满足以下约束条件:

  1. 功率平衡约束

∑ i = 1 N t P r e f i = P t \sum_{i=1}^{N_t} P_{ref}^i = P_t i=1NtPrefi=Pt

  1. 功率限制约束

P r e f i ≤ 5  MW ∀ i P_{ref}^i \leq 5 \text{ MW} \quad \forall i Prefi5 MWi

  1. 跟踪限制约束

∣ P r e f i − P ˉ r e f ∣ ≤ 1  MW ∀ i |P_{ref}^i - \bar{P}_{ref}| \leq 1 \text{ MW} \quad \forall i PrefiPˉref1 MWi

其中, P ˉ r e f = P t N t \bar{P}_{ref} = \frac{P_t}{N_t} Pˉref=NtPt为平均功率分配。

4. 目标函数和权重

在设定目标函数时,可以考虑主轴和塔架的疲劳损伤的权重,假如我们设定主轴与塔架的权重为 w s w_s ws w t w_t wt, 那么可以修改目标函数为:

min ⁡ D ′ = ∑ i = 1 N t ( w s D s i + w t D t i ) \min D' = \sum_{i=1}^{N_t} (w_s D_{s}^i + w_t D_{t}^i) minD=i=1Nt(wsDsi+wtDti)

我们可以通过设定适当的 w s w_s ws w t w_t wt 来调整每个部分在整体优化中的重要性。例如,若认为主轴的重要性更高可设置 w s > w t w_s > w_t ws>wt

5. 实时求解

为保证每秒进行一次功率分配,可以采用合适的优化算法,如梯度下降法或遗传算法等进行实时计算。优化算法过程中的步骤如下:

  1. 在每一秒钟,获取当前的风速 V w i V_w^i Vwi 和功率参考值 P t P_t Pt
  2. 计算每台风机的当前主轴和塔架疲劳损伤 D s i D_{s}^i Dsi D t i D_{t}^i Dti
  3. 应用优化算法,计算出新的功率分配 P r e f i P_{ref}^i Prefi
  4. 输出当前的功率分配以及单台风机和整体风电场的疲劳损伤。

6. 结果对比

最后,我们需要展示优化前后的累积疲劳损伤情况,包括:

  • 各风机的累积疲劳损伤程度;
  • 所有风机的累积疲劳损伤总和;
  • 优化前后风机间参考功率的方差值,可以用于评估优化效果。

通过实施上述步骤,能够有效地降低风电场内风机的总体疲劳损伤,提升其运行的安全性与经济性。
在这里插入图片描述

在解决有功调度优化问题时,我们需要构建一个有效的数学模型来实现风电场内风机的功率分配。根据题目要求,我们可以将目标和约束条件清晰地设立,并利用优化算法进行求解。

目标函数定义

我们的目标是尽量降低风电场内所有风机的总体疲劳损伤程度。可以定义为每种元件(主轴和塔架)的疲劳损伤的加权和。假设每台风机的主轴疲劳损伤为 D F s i D_{F_s}^i DFsi,塔架疲劳损伤为 D F t i D_{F_t}^i DFti,那么总体疲劳损伤可以表示为:

D t o t a l = ∑ i = 1 N t ( w s D F s i + w t D F t i ) D_{total} = \sum_{i=1}^{N_t} \left( w_s D_{F_s}^i + w_t D_{F_t}^i \right) Dtotal=i=1Nt(wsDFsi+wtDFti)

其中 w s w_s ws w t w_t wt 为主轴和塔架疲劳损伤的权重,我们可以根据实际情况选择适当的权重值。

优化问题的约束条件

我们需要确保满足以下约束条件:

  1. 所有风机的有功参考值之和必须等于电网调度指令 (P_t):

    ∑ i = 1 N t P r e f i = P t \sum_{i=1}^{N_t} P_{ref}^i = P_t i=1NtPrefi=Pt

  2. 每台风机的有功参考值不能超过风机的额定功率(5MW):

    P r e f i ≤ 5  MW , ∀ i P_{ref}^i \leq 5 \text{ MW}, \quad \forall i Prefi5 MW,i

  3. 每台风机的有功优化分配值与均值分配结果的差值不能超过1MW:

    设定平均分配功率为

    P ˉ r e f = P t N t \bar{P}_{ref} = \frac{P_t}{N_t} Pˉref=NtPt

    则约束条件为:

    ∣ P r e f i − P ˉ r e f ∣ ≤ 1  MW , ∀ i |P_{ref}^i - \bar{P}_{ref}| \leq 1 \text{ MW}, \quad \forall i PrefiPˉref1 MW,i

优化模型构建与求解

我们可以利用线性规划或其他优化算法(如遗传算法、粒子群优化等)来求解上述问题。以线性规划为例,我们可以将目标函数设为最小化总累积疲劳损伤,约束条件作为线性不等式和等式加入,最终形成标准形式的线性规划问题。

示例优化模型

将上述内容整合起来,优化模型可以表达为:

最小化目标函数:

Minimize  Z = ∑ i = 1 N t ( w s D F s i + w t D F t i ) \text{Minimize } Z = \sum_{i=1}^{N_t} \left( w_s D_{F_s}^i + w_t D_{F_t}^i \right) Minimize Z=i=1Nt(wsDFsi+wtDFti)

约束条件:

  1. $ \sum_{i=1}^{N_t} P_{ref}^i = P_t $
  2. $ P_{ref}^i \leq 5 \text{ MW}, \quad \forall i $
  3. $ |P_{ref}^i - \bar{P}_{ref}| \leq 1 \text{ MW}, \quad \forall i $

实时计算与结果展示

在实现过程中,程序应以每秒为单位进行功率分配计算。为确保实时性,算法应高效,优化求解过程需要在1s内完成。可以展示一个计时器的动图,实时显示计算结果。在结果展示方面,我们需要:

  • 展示优化前后各风机的累积疲劳损伤情况;
  • 比较优化前后所有风机的累积疲劳损伤总和;
  • 附上优化前后风机间参考功率的方差值变化。

结论与未来工作

通过建立明确的优化目标和合理的约束条件,我们可以有效地优化风电场中的有功功率分配。这种方法不仅能够降低风机的累积疲劳损伤,从而延长设备的使用寿命,也能提高经济效益。在未来的工作中,可以考虑更复杂的约束条件和多种目标权重组合,提高模型的准确性和实用性。
为了解决有功调度优化问题,我们需要构建一个数学模型,根据给定的目标和约束条件,优化风电场内所有风机的有功功率分配。以下是详细的数学模型构建及优化过程:

1. 模型的基本构成

目标函数

我们的目标是尽可能降低所有风机的总体疲劳损伤程度。假设每台风机 (i) 的整体疲劳损伤 (D_i) 是由主轴疲劳损伤 (D_{i, \text{轴}}) 和塔架疲劳损伤 (D_{i, \text{塔}}) 组成。我们可以设定目标函数如下:

min ⁡ Z = 1 N t ∑ i = 1 N t ( D i , 轴 + D i , 塔 ) \min Z = \frac{1}{N_t} \sum_{i=1}^{N_t} (D_{i, \text{轴}} + D_{i, \text{塔}}) minZ=Nt1i=1Nt(Di,+Di,)

其中 (N_t) 是风机的总数量。这个目标函数旨在最小化所有风机的平均疲劳损伤。

疲劳损伤的计算

每台风机的疲劳损伤根据前述的累积损伤模型进行计算,假设我们能够在每个时间点 (t) 计算风机 (i) 的累积疲劳损伤为:

D i , t = D i , 轴 , t + D i , 塔 , t D_{i, t} = D_{i, \text{轴}, t} + D_{i, \text{塔}, t} Di,t=Di,,t+Di,,t

其中 D i , 轴 , t D_{i, \text{轴}, t} Di,,t D i , 塔 , t D_{i, \text{塔}, t} Di,,t 分别为主轴和塔架的累积疲劳损伤。

2. 约束条件

为了满足实际的运行需求,我们需要设定以下约束条件:

  1. 有功参考值的和等于电网调度指令:

    ∑ i = 1 N t P ref , i = P t \sum_{i=1}^{N_t} P_{\text{ref}, i} = P_t i=1NtPref,i=Pt

  2. 每台风机的有功参考值不能大于其额定功率:

    P ref , i ≤ 5   MW , ∀ i P_{\text{ref}, i} \leq 5 \, \text{MW}, \quad \forall i Pref,i5MW,i

  3. 优化分配值与平均分配值的差值不超过1MW:

    ∣ P ref , i − P 平均 , i ∣ ≤ 1   MW , ∀ i |P_{\text{ref}, i} - P_{\text{平均}, i}| \leq 1 \, \text{MW}, \quad \forall i Pref,iP平均,i1MW,i

    其中 (P_{\text{平均}, i} = \frac{P_t}{N_t})。

3. 优化算法

为了求解上述优化问题,可以采用线性规划或非线性规划的方法,如使用最优算法(如遗传算法、粒子群优化或其他启发式算法)来寻找最优解。通常来说,由于问题的实时性需求,我们应选择计算效率高的算法。

4. 结果讨论与可视化

在优化完成后,我们应展示约束条件的满足情况,具体包括:

  • 所有风机的累积疲劳损伤的优化前后对比。
  • 优化前后所有风机的平均疲劳损伤程度。
  • 各风机的功率输出,显示每台风机的优化结果。

可以使用动态图/图表展示计算结果,尤其是各个风机在优化前后的疲劳程度、功率分配情况等。

Conclusion

通过上述分析和建模,我们能够构建一个有效的优化策略,旨在减少风电场的总体疲劳损伤程度,并满足电网调度的需要。此优化措施不仅兼顾了工程实际需求,还为风电场的可持续运维提供了新的思路。

import numpy as np
from scipy.optimize import minimize

# 示例数据
N_t = 100  # 风机数量
P_t = 500  # 电网调度指令(假设总功率)
rated_power = 5.0  # 风机额定功率(5MW)
avg_power_ref = P_t / N_t  # 平均分配功率参考值

# 初始的功率参考值
P_ref = np.full(N_t, avg_power_ref)

# 假设的累积疲劳损伤计算函数,其中D_f_i为第i台风机的疲劳损伤
def fatigue_damage(P_ref):
    # 这里使用一些假设的计算方式来估算累积疲劳损伤
    # 实际模型需要替换为具体的疲劳损伤计算逻辑
    D_f_i = (P_ref ** 2) / (rated_power ** 2)  # 简单模型,通常最后需要调整
    return np.sum(D_f_i)  # 总累积疲劳损伤

# 约束条件
constraints = [{
    'type': 'eq',
    'fun': lambda P_ref: np.sum(P_ref) - P_t  # 确保总功率等于调度指令
}, {
    'type': 'ineq',
    'fun': lambda P_ref: rated_power - P_ref  # 各风机功率不超过额定功率
}, {
    'type': 'ineq',
    'fun': lambda P_ref: P_ref - (avg_power_ref - 1.0)  # 与平均分配差值不超过1MW
}]

# 优化任务
result = minimize(fatigue_damage, P_ref, constraints=constraints, method='SLSQP')

if result.success:
    optimized_P_ref = result.x
    print("优化后的功率参考值:", optimized_P_ref)
    print("优化后的累积疲劳损伤:", fatigue_damage(optimized_P_ref))
else:
    print("优化失败:", result.message)

此代码示例展示了如何建立一个优化模型,以实现风电场内有功功率的优化分配。主要步骤如下:

  1. 数据准备: 设定风机数量、调度指令和额定功率等参数。
  2. 累积疲劳损伤计算: 定义一个简单的累积疲劳损伤计算函数。在实际应用中,这一部分需根据具体的疲劳损伤计算模型进行完善。
  3. 约束条件设置: 确保所有风机的功率加总满足调度指令并且不超过额定功率。
  4. 优化求解: 使用scipy.optimize.minimize函数进行优化,采用SLSQP方法求解,处理约束条件。
  5. 结果输出: 如果优化成功,打印优化后的功率参考值及其对应的累积疲劳损伤。

在这里插入图片描述

问题四

第四个问题是:“考虑通信延迟和测量噪声的有功功率优化与求解”。

具体要求如下:

  • 实际风电场中,AGC系统所需的信号通过多种传感器采集并经由高速光纤环网传递至集控。
  • 现场传感器测量数据存在随机噪声,导致采集数据受到随机干扰,实际工程中噪声一般为原始数据的正负10%以内(测量值与真实值的相对误差在10%以内)。
  • 通信过程在协议层和物理层均可能受到传输拥塞影响,存在随机传输延迟问题,导致部分时间段数据无法及时采集,此时优化调度过程仅可基于上一个正常通信时刻的采集数据进行优化,实际工程中一般最大延迟为10s以内。
  • 随着测量噪声和通信延迟的影响,优化问题的理想解可能难以满足实际需求,因此需要完善问题三中的优化方案。
  • 附件4为额外的十台风机的300s测量数据(仅提供添加噪声以及延迟后的数据,不包含原数据),数据类型同附件3,作为测试集检验鲁棒模型。

要求展示并对比优化效果,具体要求与问题三中的类似,包括优化后结果与优化前结果的对比,以及展示所建模型对噪声和延迟的抑制能力。
为了解决“考虑通信延迟和测量噪声的有功功率优化与求解”这一问题,我们在问题三的基础上进行模型的完善和改进,以应对实际风电场中可能遇到的测量噪声和通信延迟的影响。

问题分析与建模思路

  1. 考虑噪声因素
    在实际应用中,传感器可能会受到噪声的影响,测得的风速和功率参考值都有可能存在正负10%的随机误差。我们可以表示实际测量值为:
    P t ∗ = P t ( 1 + ϵ 1 ) , V w i ∗ = V w i ( 1 + ϵ 2 ) P_t^* = P_t(1 + \epsilon_1), \quad V_w^{i*} = V_w^i(1 + \epsilon_2) Pt=Pt(1+ϵ1),Vwi=Vwi(1+ϵ2)
    其中, ϵ 1 \epsilon_1 ϵ1 ϵ 2 \epsilon_2 ϵ2 是表示噪声的随机变量,范围限制为 [ − 0.1 , 0.1 ] [-0.1, 0.1] [0.1,0.1]

  2. 考虑通信延迟
    由于通信延迟可能导致数据采集不及时,模型在优化某个时间点 t t t时,需使用已知的历史数据进行优化。对于最大延迟设为10秒,我们可以设定一个时钟变量 k k k,使得在时间 t t t时刻使用时间 t − k t-k tk的数据进行功率分配,其中 k ∈ [ 0 , τ ] k \in [0, \tau] k[0,τ] τ = 10 \tau = 10 τ=10秒。

  3. 优化模型的构建
    优化目标是降低所有风机的总体疲劳损伤程度,并满足电网调度指令。可以沿用问题三的优化目标函数,假设目标为降低各类元件的疲劳损伤程度,同时通过噪声和延迟修正输入。

    • 目标函数示例:
      min ⁡ D F = 1 N t ∑ i = 1 N t ( D F , 主轴 i + D F , 塔架 i ) \min \quad D_F = \frac{1}{N_t} \sum_{i=1}^{N_t} (D_{F, \text{主轴}}^i + D_{F, \text{塔架}}^i) minDF=Nt1i=1Nt(DF,主轴i+DF,塔架i)
      其中 D F , 主轴 i D_{F, \text{主轴}}^i DF,主轴i D F , 塔架 i D_{F, \text{塔架}}^i DF,塔架i 代表第 i i i台风机主轴与塔架的累积疲劳损伤。

    • 约束条件:

    • 有功功率和满足电网调度指令: ∑ i = 1 N t P ref i = P t ∗ \sum_{i=1}^{N_t} P_{\text{ref}}^i = P_t^* i=1NtPrefi=Pt

    • 不超过额定功率: P ref i ≤ 5 MW ∀ i P_{\text{ref}}^i \leq 5 \text{MW} \quad \forall i Prefi5MWi

    • 与平均功率分配方法的差值限制: ∣ P ref i − P ˉ ref ∣ ≤ 1 MW ∀ i |P_{\text{ref}}^i - \bar{P}_{\text{ref}}| \leq 1 \text{MW} \quad \forall i PrefiPˉref1MWi
      其中 P ˉ ref = P t ∗ / N t \bar{P}_{\text{ref}} = P_t^*/N_t Pˉref=Pt/Nt为平均功率分配值。

    与噪声和延迟相结合的目标优化问题可表示为:
    min ⁡ { P ref i } ( 1 N t ∑ i = 1 N t D F , 主轴 i + D F , 塔架 i ) \min_{\{P_{\text{ref}}^i\}} \left( \frac{1}{N_t} \sum_{i=1}^{N_t} D_{F, \text{主轴}}^i + D_{F, \text{塔架}}^i \right) {Prefi}min(Nt1i=1NtDF,主轴i+DF,塔架i)
    s.t.
    ∑ i = 1 N t P ref i = P t ∗ P ref i ≤ 5 MW ∀ i ∣ P ref i − P ˉ ref ∣ ≤ 1 MW ∀ i \begin{align*} &\sum_{i=1}^{N_t} P_{\text{ref}}^i = P_t^* \\ &P_{\text{ref}}^i \leq 5 \text{MW} \quad \forall i \\ &|P_{\text{ref}}^i - \bar{P}_{\text{ref}}| \leq 1 \text{MW} \quad \forall i \end{align*} i=1NtPrefi=PtPrefi5MWiPrefiPˉref1MWi

  4. 求解与验证
    在获得目标函数和相应约束条件后,我们可以利用合适的优化算法(如遗传算法、粒子群优化或其他约束优化方法)进行求解,并设定合适的停止准则。在模拟时,请务必在程序中加入对测量噪声的处理 capability,确保优化系统的鲁棒性。

  5. 结果展示

    • 提供优化前后(未实施模型及实施模型后)对于每台风机的累积疲劳损伤的对比;
    • 生成波动图,展示风机在不同情况下的功率跟踪能力和损伤
    • 在这里插入图片描述

问题四:考虑通信延迟和测量噪声的有功功率优化与求解

在风电场的实际运行中,AGC系统的优化调度受到传感器输出的不确定性和通信延迟的影响。这些问题不仅影响了数据采集的实效性,还可能导致优化决策的失效。因此,为了应对这些挑战,我们需要对优化模型进行改进和调整。

1. 数据预处理

在进行功率优化调度之前,我们首先对传感器采集的数据进行噪声处理。假设原始数据为 D t r u e D_{true} Dtrue,测量噪声为 N N N,其中 N N N符合正态分布且其标准差为 0.1 D t r u e 0.1D_{true} 0.1Dtrue(相对误差为10%)。因此,实际测得的信号可以表示为:

D m e a s u r e = D t r u e + N D_{measure} = D_{true} + N Dmeasure=Dtrue+N

这要求在进行功率优化前,利用滤波方法(如卡尔曼滤波)来从这些测量数据中去除噪声。

2. 考虑通信延迟的优化模型

在数据采集过程中,对于可能出现的通信延迟,我们可以定义一个延迟时间阈值(例如最大延迟为10秒)。对于任意的时间步骤 t t t,设定变量 D o p t i m a l ( t − d ) D_{optimal}(t_{-d}) Doptimal(td)为在时间 t − d t-d td d d d为延迟时间)点计算的有效数据信号。这意味着我们需要在计算当前时刻的优化调度时,使用最近一次有效的数据。

因此,我们的目标函数更新为:

min ⁡ P r e f ∑ i = 1 N t D e f f ( P r e f i ( t − d ) ) \min_{P_{ref}} \sum_{i=1}^{N_t} D_{eff}(P_{ref}^i(t-d)) Prefmini=1NtDeff(Prefi(td))

其中, D e f f ( P r e f i ) D_{eff}(P_{ref}^i) Deff(Prefi)是对风机 i i i的有效优化损伤值,基于传入的延迟数据。

3. 优化目标与约束条件

在保留问题三中定义的优化目标的基础上,我们需要增加以下新的约束来确保优化模型的鲁棒性:

  • 确保优化指令与平均分配间的差值小于1MW,即:

∣ P r e f i − P a v g ∣ ≤ 1  MW ∀ i |P_{ref}^i - P_{avg}| \leq 1 \text{ MW} \quad \forall i PrefiPavg1 MWi

  • 确保所有风机的电力总和等于调度指令:

∑ i = 1 N t P r e f i ( t ) = P t ( t ) \sum_{i=1}^{N_t} P_{ref}^i(t) = P_t(t) i=1NtPrefi(t)=Pt(t)

4. 效果评估与结果对比

对比优化前后的结果,我们可以使用以下指标:

  • 监测并比较不同时间段的总体疲劳损伤程度,特别是通过计算以下两个指标:

D t o t a l = ∑ i = 1 N t D e f f ( P r e f i ( t ) ) D_{total} = \sum_{i=1}^{N_t} D_{eff}(P_{ref}^i(t)) Dtotal=i=1NtDeff(Prefi(t))

  • 计算优化前后的功率参考值差异。优化前后每台风机的累积疲劳损伤程度可以通过最大值、最小值及均值来描述,同时关注优化后结果与延迟前结果的差异。
5. 展示模型鲁棒性

展示模型对噪声和延迟的抑制能力,可以通过以下方式进行比较:

  • 计算在考虑噪声与延迟前后,疲劳损伤程度的方差与均值变化。
  • 通过仿真结果展示不同情况下优化的效果,包括未做处理时(即使用噪声和延迟数据)与相比采用去噪声与延迟处理的优化调度效果。
结论

在处理通信延迟和测量噪声的背景下,对于风电场的有功功率优化分配,不仅要考虑电力的实时调度,还必须对数据的准确性和保证其有效性采取适当的策略。通过滤波、延迟补偿,以及动态优化模型调整,可以显著提高系统对于不确定性的鲁棒性,并降低风机的累积疲劳损伤程度,确保风电场的安全稳定运行。
在解决考虑通信延迟和测量噪声的有功功率优化问题时,需要对问题三中的优化方案进行改进。以下是针对问题四的详细建模与求解方案。

优化模型构建

1. 模型目标与约束

目标函数
为了降低风电场的运维成本,我们定义目标函数为:

min ⁡ J = α ⋅ 1 N t ∑ i = 1 N t D F , 主轴 i + β ⋅ 1 N t ∑ i = 1 N t D F , 塔架 i \min J = \alpha \cdot \frac{1}{N_t} \sum_{i=1}^{N_t} D_{F,\text{主轴}}^i + \beta \cdot \frac{1}{N_t} \sum_{i=1}^{N_t} D_{F,\text{塔架}}^i minJ=αNt1i=1NtDF,主轴i+βNt1i=1NtDF,塔架i

其中,

  • ( D_{F,\text{主轴}}^i ) 为第 (i) 台风机主轴的累积疲劳损伤;
  • ( D_{F,\text{塔架}}^i ) 为第 (i) 台风机塔架的累积疲劳损伤;
  • α \alpha α β \beta β 分别为主轴和塔架损伤的权重系数,且 α + β = 1 \alpha + \beta = 1 α+β=1

约束条件

  1. 功率总和必须等于调度指令:
    ∑ i = 1 N t P ref i = P t \sum_{i=1}^{N_t} P_{\text{ref}}^i = P_t i=1NtPrefi=Pt

  2. 各个风机的功率参考值不能超过其额定功率:
    P ref i ≤ P max ∀ i P_{\text{ref}}^i \leq P_{\text{max}} \quad \forall i PrefiPmaxi
    其中 ( P_{\text{max}} ) 为5MW.

  3. 优化后参考值与平均分配结果之间的差值:
    ∣ P ref i − P ‾ ref ∣ ≤ 1 MW ∀ i |P_{\text{ref}}^i - \overline{P}_{\text{ref}}| \leq 1 \text{MW} \quad \forall i PrefiPref1MWi
    其中 P ‾ ref = P t N t \overline{P}_{\text{ref}} = \frac{P_t}{N_t} Pref=NtPt 为平均分配功率。

2. 考虑噪声与延迟

由于测量数据可能受到噪声的干扰,我们可以在模型函数中引入一个用于处理测量误差的因素:

  • 假设每个风机的真实功率参考值由于测量噪声 ( e^i ) 受到影响:

P measured i = P ref i + e i , ∣ e i ∣ ≤ 0.1 × P ref i P^i_{\text{measured}} = P^i_{\text{ref}} + e^i, \quad |e^i| \leq 0.1 \times P^i_{\text{ref}} Pmeasuredi=Prefi+ei,ei0.1×Prefi

此外,由于通信延迟,优化算法只能够基于最近有效的数据进行计算。设定最大延迟为 ( \Delta_t ):

  • 在进行功率分配时,可以保存最近 Δ t \Delta_t Δt秒的功率数据 P ref i ( t − Δ ) P_{\text{ref}}^{i}(t - \Delta) Prefi(tΔ)用于权衡当前的状态。

3. 求解方法

采纳启发式优化算法或基于梯度的方法来执行该优化,避免复杂度过高并确保实时性。可以使用以下伪代码框架来表示算法流程:

时间循环 t:
    如果 t ≤ 10s:
        从数据源读取 P_t 和 P_measured
    否则:
        接收前一时刻的 P_measured
        
    计算平均功率参考值:
        计算 \overline{P}_{\text{ref}}
    
    初始化优化问题
    执行优化计算并更新 P_{\text{ref}}^i
    检查约束条件
    输出结果

4. 结果展示与性能评估

最终应对优化后的结果,与未优化结果进行对比,展示如下指标:

  • 各风机的累积疲劳损伤程度
  • 所有风机的累积疲劳损伤总和
  • 优化前后风机间参考功率方差的变化
  • 噪声和延迟情况下,优化结果的稳健性分析(例如,计算结果的方差、95%置信区间)

这约定会确保优化过程的有效性,且高效的算法实现可满足实时调度需求。
在这里插入图片描述

参考格式

请根据具体问题和计算实现将数据格式化展现。所提优化方法可在后续模型中进一步细化和实验,以验证结果的可靠性和实用性。
为了解决第四个问题,我们需要在考虑通信延迟和测量噪声的情况下重新优化风电场的有功功率分配。以下是基于前述问题的python代码实现,包含噪声处理与延迟补偿的步骤。

在实现之前,我们需要定义以下内容:

  • 噪声处理:模拟10%的随机噪声。
  • 通信延迟:引入一个延迟队列,模拟数据传输延迟。
  • 优化方案:基于延迟后最近的有效数据进行优化。

以下是代码示例:

import numpy as np
import pandas as pd
from scipy.optimize import minimize

# 假设有100台风机的数据
N = 100
time_steps = 300  # 时间步数
max_delay = 10  # 最大延迟为10秒

# 生成模拟的风速和功率参考值
np.random.seed(0)
v_wi = np.random.uniform(0, 20, (N, time_steps))  # 风速数据
P_ref_given = np.random.uniform(0, 5, N)  # 有功功率参考值

# 模拟测量误差(±10%噪声)
measurement_noise = np.random.uniform(-0.1, 0.1, (N, time_steps)) * P_ref_given[:, np.newaxis]
P_ref_with_noise = P_ref_given[:, np.newaxis] + measurement_noise

# 创建延迟队列
delayed_power_refs = np.zeros((N, time_steps))

for t in range(time_steps):
    if t < max_delay:
        delayed_power_refs[:, t] = P_ref_with_noise[:, t]  # 前t秒无延迟
    else:
        delayed_power_refs[:, t] = P_ref_with_noise[:, t - max_delay]  # 最大延迟10秒

# 目标函数:最小化累积疲劳损伤(示例,这里采用均方差作为目标)
def objective_function(P_ref):
    return np.sum((P_ref - P_ref_given) ** 2)  # 使用P_ref与原始P_ref之间的差作为目标

# 约束条件:总功率与P_t相等
def constraint_sum(P_ref):
    return np.sum(P_ref) - P_t  # P_t为电网调度指令,需根据实际数据确定

# 示例的电网调度指令
P_t = 500  # 以KW为单位的功率总需求

# 进行优化
results = []

for t in range(time_steps):
    # 当前时刻的功率参考值
    initial_guess = np.ones(N) * (P_t / N)  # 初始猜测为平均分配
    constraints = {'type': 'eq', 'fun': constraint_sum}
    bounds = [(0, 5) for _ in range(N)]  # 每台风机功率限制在0到5MW之间

    # 最小化优化
    res = minimize(objective_function, delayed_power_refs[:, t], constraints=constraints, bounds=bounds)
    results.append(res.x)

# 将结果转换为DataFrame,便于分析和可视化
optimized_power_distribution = pd.DataFrame(results, columns=[f'Wind_Turbine_{i+1}' for i in range(N)])

# 输出最终优化结果
optimized_power_distribution.to_csv('optimized_power_distribution.csv', index=False)

# 打印优化结果
print(optimized_power_distribution)

代码说明:

  1. 数据生成:生成风速与有功功率的模拟数据,并加入了±10%噪声。
  2. 延迟处理:创建一个延迟队列来模拟实际通信延迟的影响。
  3. 目标函数:设置最小化目标为所分配功率与给定功率之间的均方差。
  4. 约束条件:保证功率分配总和等于电网调度指令P_t
  5. 优化过程:使用scipy.optimize.minimize进行优化,并将结果储存到CSV文件中。

使用该代码,即可模拟风电场在考虑通信延迟和测量噪声的情况下的有功功率优化过程。优化后的结果可以用于进一步分析与展示。

问题四二解

问题四:考虑通信延迟和测量噪声的有功功率优化与求解

具体要求如下:

  • 需要考虑AGC系统中传感器测量数据的随机噪声(通常为原始数据的正负10%)和通信过程中可能出现的随机传输延迟(最大延迟为10s)对模型精度和优化问题的影响。
  • 参赛者需要完善问题三中的优化方案。
  • 展示并比对优化效果,具体要求与问题三相同,包括展示模型对噪声和延迟的抑制能力。
  • 附件4提供了额外的十台风机的300s测量数据,以供测试和验证模型的鲁棒性。

问题四:考虑通信延迟和测量噪声的有功功率优化与求解

在这一问题中,我们将扩展第三个问题的优化方案,以应对实际风电场中通信延迟和测量噪声对优化问题造成的影响。我们的目标是确保在存在随机测量噪声(±10%)和最大传输延迟(10秒)情况下,依然能够实现有效的有功功率优化分配。

1. 问题建模

首先,我们定义优化目标函数和约束条件,并考虑噪声和延迟对数据的影响。

1.1 目标函数

我们可以定义目标函数为:

min ⁡ J = 1 N t ∑ i = 1 N t ( D F 1 i + D F 2 i ) \min J = \frac{1}{N_t} \sum_{i=1}^{N_t} (D_{F1}^i + D_{F2}^i) minJ=Nt1i=1Nt(DF1i+DF2i)

其中, D F 1 i D_{F1}^i DF1i D F 2 i D_{F2}^i DF2i分别代表风机 i i i主轴和塔架的累积疲劳损伤程度。这里我们希望通过调整有功功率分配来最小化所有风机的疲劳损伤。

1.2 约束条件
  1. 供电约束:所有风机的有功功率参考值总和必须等于电网调度指令 P t P_t Pt

∑ i = 1 N t P ref i = P t \sum_{i=1}^{N_t} P_{\text{ref}}^i = P_t i=1NtPrefi=Pt

  1. 最大功率限制:每台风机的功率参考值不得超过其额定功率(5MW):

P ref i ≤ 5   MW P_{\text{ref}}^i \leq 5\, \text{MW} Prefi5MW

  1. 参考功率偏差限制:各风机的有功优化分配值与平均分配功率结果的差值不得超过1MW:

∣ P ref i − P ˉ ref ∣ ≤ 1   MW |P_{\text{ref}}^i - \bar{P}_{\text{ref}}| \leq 1\, \text{MW} PrefiPˉref1MW

其中, P ˉ ref = P t N t \bar{P}_{\text{ref}} = \frac{P_t}{N_t} Pˉref=NtPt

1.3 噪声和延迟建模

为了建模随机测量噪声和通信延迟,我们引入以下变化:

  • 噪声模型:我们假定测量的有效值 V w measured V_w^{\text{measured}} Vwmeasured 和承载的有功功率 P ref P_{\text{ref}} Pref 受到臭氧最大正负10%的影响:

V w measured = V w true × ( 1 + δ 1 ) P ref measured = P ref true × ( 1 + δ 2 ) V_w^{\text{measured}} = V_w^{\text{true}} \times (1 + \delta_1) \\ P_{\text{ref}}^{\text{measured}} = P_{\text{ref}}^{\text{true}} \times (1 + \delta_2) Vwmeasured=Vwtrue×(1+δ1)Prefmeasured=Preftrue×(1+δ2)

其中 δ 1 , δ 2 ∈ [ − 0.1 , 0.1 ] \delta_1, \delta_2 \in [-0.1, 0.1] δ1,δ2[0.1,0.1] 为随机噪声项。

  • 延迟模型:在设定的最大10秒延迟情况下,部分风机的数据会使用最近 T T T秒的历史数据进行估算。

在每次计算中,AGC系统应选择最近可用的有效数据来进行优化。设当前时间为 t t t,由于最大延迟为10秒,优化过程应该使用时间 t − k t-k tk的数据,其中 k ∈ [ 0 , 10 ] k \in [0,10] k[0,10]

2. 优化算法

对于这个问题,我们可以使用启发式算法(如遗传算法、粒子群优化算法等)来解决高维度的优化问题。算法步骤如下:

  1. 初始化种群,随机生成多组功率分配方案。
  2. 评估每个方案的目标函数值,同时检查约束条件是否被满足。
  3. 选择适应度较高的方案以生成新一代种群。
  4. 通过交叉和变异操作产生新的功率分配方案。
  5. 重复评估、选择、交叉和变异的步骤,直至达到预定的代数或满足停止条件。
3. 鲁棒性验证

使用附件4中的噪声和延迟数据,应用上述优化算法,记录不同情况下优化效果。我们将比较优化结果与历史数据参考值之间的差异,特别是以下方面:

  • 各风机优化前后累积疲劳损伤程度的变化。
  • 所有风机的累积疲劳损伤总和的变化。
  • 风机间参考功率方差值的变化。
4. 结果展示

我们将使用图表形式展示
在问题四中,我们需要对有功功率优化进行建模时,考虑到通信延迟和测量噪声的影响。为了增强模型的鲁棒性和实用性,下面是一个改进的方案及其实现步骤。
在这里插入图片描述

1. 问题描述

在实际风电场中,AGC系统内的传感器获取的数据可能会出现随机噪声,通常噪声范围为原始数据的正负10%。此外,数据在传输过程中也可能出现延迟,延迟最大为10秒。这些因素都会影响到优化结果的准确性和实时性。因此,我们的目标是针对这些风险,优化功率调度方案。

2. 数学模型构建

我们首先考虑在给定的风机功率参考值的基础上引入噪声和延迟的修正,建立修改后的有功功率优化问题如下:

目标函数

同样,我们希望最小化所有风机元件的疲劳损伤程度,可以定义一个加权目标函数:

min ⁡ J = α ⋅ J shaft + β ⋅ J tower \min \quad J = \alpha \cdot J_\text{shaft} + \beta \cdot J_\text{tower} minJ=αJshaft+βJtower

其中:

  • J shaft J_\text{shaft} Jshaft 表示所有风机主轴的疲劳损伤
  • J tower J_\text{tower} Jtower 表示所有风机塔架的疲劳损伤
  • α \alpha α β \beta β 是权重系数
约束条件

与问题三相同,约束条件为:

  1. 总参考功率保持平衡:
    ∑ i = 1 N t P ref i = P t \sum_{i=1}^{N_t} P_{\text{ref}}^i = P_t i=1NtPrefi=Pt

  2. 各风机功率参考值不超过额定功率:
    P ref i ≤ 5 MW P_{\text{ref}}^i \leq 5 \text{MW} Prefi5MW

  3. 限制优化分配值与平均分配的差值:
    ∣ P ref i − P ˉ ref ∣ ≤ 1 MW |P_{\text{ref}}^i - \bar{P}_{\text{ref}}| \leq 1 \text{MW} PrefiPˉref1MW

3. 噪声与延迟处理

噪声修正

数据在使用前需进行噪声模拟,加入一个随机变量 N i N^i Ni 以模拟正负10%的测量噪声:
V measured i = V actual i + N i ( ∣ N i ∣ ≤ 0.1 ⋅ V actual i ) V_{\text{measured}}^i = V_{\text{actual}}^i + N^i \quad (|N^i| \leq 0.1 \cdot V_{\text{actual}}^i) Vmeasuredi=Vactuali+Ni(Ni0.1Vactuali)

延迟处理

对于延迟情况,我们可以引入一个延迟修正因子 D i D_i Di,在接收到新数据的情况下使用历史数据进行性能评估。

P ref i ( t ) = P ref i ( t − D i ) ( D i ≤ 10 s ) P_{\text{ref}}^i(t) = P_{\text{ref}}^i(t - D_i) \quad (D_i \leq 10s) Prefi(t)=Prefi(tDi)(Di10s)

将这些修正因素纳入模型后,在每次优化计算中,我们都使用当前的风速数据和历史参考功率修正过的值进行计算。

4. 优化方案实现和效果对比

在优化求解后,我们可以通过比较优化后和优化前的结果来评估模型的鲁棒性。主要的比较指标包括:

  • 优化后与优化前疲劳损伤总和
  • 数据噪声下的敏感性分析
  • 延迟情况下的功率参考值准确性

可以采取相应的图形化方式展示优化效果,比如以曲线图展示每台风机的累积疲劳损伤程度的变化趋势,结合不同噪声和延迟的影响进行比较。

5. 结论

通过这种方法,我们可以健全问题三中的模型,使其更加符合实际应用中的需求。即便面对噪声和延迟,本模型仍然具备较强的鲁棒性,在保证风电场效益的同时,能够有效降低风机的疲劳损伤,提高其安全性和运行效率。

问题四:考虑通信延迟和测量噪声的有功功率优化与求解

问题描述

在AGC(自动发电控制)系统中,传感器采集的数据存在随机噪声和通信延迟影響,这會对优化模型的精度和有效性造成影响。为了解决这一问题,优化方案需要进一步完善,以使得在考虑噪声和延迟的情况下,仍能有效实现有功功率的优化分配。

目标

我们的目标是:

  1. 优化功率分配策略以最小化因测量噪声和通信延迟导致的误差。
  2. 维持风电场自身的运行安全,并尽量降低整个风电场的疲劳损伤程度。
公式推导
  1. 噪声建模
    假设真实的功率参考值为 P true i P_{\text{true}}^i Ptruei,测量值 P m i P_m^i Pmi 受到随机噪声 N i N^i Ni 影响,即:
    P m i = P true i + N i , N i ∼ N ( 0 , 0.1 ⋅ P true i ) P_m^i = P_{\text{true}}^i + N^i, \quad N^i \sim \mathcal{N}(0, 0.1 \cdot P_{\text{true}}^i) Pmi=Ptruei+Ni,NiN(0,0.1Ptruei)
    这里, N i N^i Ni为随机噪声,符合均值为0,标准差为 0.1 ⋅ P true i 0.1 \cdot P_{\text{true}}^i 0.1Ptruei的正态分布。

  2. 通信延迟建模
    设定在最大延迟为10s的情况下,某一时刻的状态仅能获取到前一时刻的功率参考值,表示为:
    P d i ( t ) = P m i ( t − Δ t ) , Δ t ≤ 10 s P_d^i(t) = P_m^i(t - \Delta t), \quad \Delta t \leq 10 \text{s} Pdi(t)=Pmi(tΔt),Δt10s
    这里, P d i ( t ) P_d^i(t) Pdi(t) 为带延迟的功率参考值。

  3. 优化模型建立
    假设目标是最小化所有风机的总累计疲劳损伤,建立如下优化目标:
    min ⁡ ∑ i = 1 N t D ( P ref i ( t ) ) = ∑ i = 1 N t ( D s h a f t i ( t ) + D t o w e r i ( t ) ) \min \sum_{i=1}^{N_t} D(P_{\text{ref}}^i(t)) = \sum_{i=1}^{N_t} \left( D_{shaft}^i(t) + D_{tower}^i(t) \right) mini=1NtD(Prefi(t))=i=1Nt(Dshafti(t)+Dtoweri(t))
    其中

    • D s h a f t i ( t ) D_{shaft}^i(t) Dshafti(t) 为第 i i i台风机主轴的疲劳损伤,
    • D t o w e r i ( t ) D_{tower}^i(t) Dtoweri(t) 为第 i i i台风机塔架的疲劳损伤。
  4. 约束条件

    • 总功率应等于电网调度指令:
      ∑ i = 1 N t P ref i ( t ) = P t \sum_{i=1}^{N_t} P_{\text{ref}}^i(t) = P_t i=1NtPrefi(t)=Pt
    • 各风机有功参考值不超过额定值(5MW):
      P ref i ( t ) ≤ 5   MW P_{\text{ref}}^i(t) \leq 5 \, \text{MW} Prefi(t)5MW
    • 各风机的有功优化分配值与均分方法的差值不超过1MW:
      ∣ P ref i ( t ) − P ˉ ∣ ≤ 1   MW |P_{\text{ref}}^i(t) - \bar{P}| \leq 1 \, \text{MW} Prefi(t)Pˉ1MW
      其中, P ˉ \bar{P} Pˉ 为均分功率。
模型鲁棒性验证

为检验优化模型对噪声和延迟的抑制能力,采用以下步骤:

  1. 进行100台风机的功率优化计算,并与基于简单平均法分配的结果(作为对照)进行比较。
  2. 分析在加入噪声和延迟后的模型表现及与理想模型的偏差。
  3. 计算各时刻的估算值与参考值之间的平方差,以验证模型的稳定性。
结果展示与比较

使用图表和数据呈现优化前后的功率分配以及相应的疲劳损伤情况,能够为模型的有效性与鲁棒性提供强力证明。同时将记录具有代表性的风机在不同情况下的最大疲劳损伤指标,从而全面展示所建立模型的优势。
在这里插入图片描述

总结

在考虑测量噪声和通信延迟的情况下,优化算法能够有效减少风电场运营中的疲劳损伤,提高系统的可靠性,并保持经济性。在实施过程中,应不断回顾优化模型及其准确性,以适应日益复杂的

import numpy as np
import scipy.optimize as opt

# 假设参数
N_t = 100  # 风机数量
P_t = 500  # 电网调度指令总功率(单位:MW)

# 风机功率参考值(模拟生成)
P_ref = np.random.uniform(0, 5, N_t)  # 5MW为额定功率
P_ref_sum = np.sum(P_ref)

# 模拟主轴和塔架的累积疲劳损伤计算
def fatigue_damage(P_ref):
    # 假设基于功率的疲劳损伤简单模型,使用 P_ref 的平方来表示损伤程度
    return np.sum(P_ref**2) / N_t

# 优化目标函数
def objective(P_ref_opt):
    return fatigue_damage(P_ref_opt)

# 约束条件
def constraints(P_ref_opt):
    return [np.sum(P_ref_opt) - P_t,  # 确保功率总和等于电网调度指令
            5 - P_ref_opt]  # 确保每台风机的P_ref不超过5MW

# 初始猜测
P_ref_initial = np.ones(N_t) * (P_t / N_t)  # 平均分配初始值

# 优化求解
result = opt.minimize(objective, P_ref_initial, constraints={'type': 'eq', 'fun': constraints}, bounds=[(0, 5)] * N_t)

# 输出优化结果
P_ref_optimized = result.x
print("优化前功率参考值:", P_ref_initial)
print("优化后功率参考值:", P_ref_optimized)
print("累积疲劳损伤度(优化前):", fatigue_damage(P_ref_initial))
print("累积疲劳损伤度(优化后):", fatigue_damage(P_ref_optimized))

# 比较优化前后的结果
print("优化前与优化后总功率之差:", np.sum(P_ref_optimized) - np.sum(P_ref_initial))

说明:

  • 此代码为有功功率优化问题的简化求解示例。使用NumPy和SciPy库进行数值计算和优化。
  • 定义了累积疲劳损伤的基本计算逻辑,目标函数为各风机功率的疲劳损伤之和。
  • 约束条件确保优化后的功率总和与电网调度指令相等,且不超过每台风机的额定功率(5 MW)。
  • 最后,输出结果用于对比优化前后的功率分配,以及各自的累积疲劳损伤程度。

研赛跟紧小秘籍冲冲冲!!更多内容可以点击下方名片详细了解!
记得关注 数学建模小秘籍打开你的数学建模夺奖之旅!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学建模小secret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值