深度学习:抗噪DRSN-CNN实现端对端滚动轴承故障诊断,CWRU轴承数据集,T-SEN可视化

深度残差收缩网络(DRSN):

哈工大赵明航老师2020年发表在《IEEE TRANSACTIONS ON INDUSTRIALINFORMATICS》的研究。

原文:Deep Residual Shrinkage Networks for Fault Diagnosis

作者:Minghang Zhao , Shisheng Zhong, Xuyun Fu


     抗噪DRSN-CNN,加入深度残差收缩模块实现端对端滚动轴承故障诊断,采用西储大学(CWRU)轴承数据集,并利用T-SEN可视化方法对其输入数据和预测结果进行可视化处理。

1.部分代码展示

####导入相应库####
import tensorflow as tf
import numpy as np
from sklearn.manifold import TSNE
from tensorflow import keras
from ovs_preprocess import prepro
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import random
from keras import layers
from datetime import datetime


###效果对比(消融实验):

## 1.原始CNN:注释加噪模块和注释DRSN抗噪模块             准确率99% 
## 2.加噪4dB CNN:加噪模块不注释,注释DRSN抗噪模块       准确率45%(CNN抗噪能力弱)
## 3.原始DRSN-CNN:注释加噪模块和DRSN抗噪模块不注释      准确率99% 
## 4.加噪4dB DRSN-CNN:加噪模块和DRSN抗噪模块都不注释   准确率80%(DRSN-CNN抗噪能力较强)

#代码、数据集自取 https://mbd.pub/o/bread/mbd-ZZeUmplx

2.数据集:西储大学(CWRU)轴承数据集

 3.运行效果

1)原始CNN(未调用抗噪模块)

    输入数据t-sen可视化

损失函数、准确率

混淆矩阵

预测结果t-sen可视化

2)加噪4dB DRSN-CNN的运行效果

运行视频效果:B站名 深度学习探索猿

深度学习:抗噪DRSN-CNN实现端对端滚动轴承故障诊断,CWRU轴承数据集,T-SEN可视化_哔哩哔哩_bilibili

CNN-LSTM模型在CWru轴承故障诊断中被广泛应用。CWru轴承故障诊断是指通过监测轴承的振动信号来检测和诊断轴承故障。传统的方法通常会使用傅里叶变换等技术来提取频谱特征,但由于其无法捕捉到时域和序列信息,因此很难准确地诊断轴承故障。 CNN-LSTM模型结合了卷积神经网络CNN)和长短期记忆网络(LSTM)的优点,为轴承故障诊断提供了更精确和准确的方法。 首先,CNN-LSTM模型使用CNN层来提取轴承振动信号的时域特征。通过卷积操作,模型能够捕捉到振动信号的局部特征。卷积核的滑动窗口可以有效地提取信号的时间段信息,从而更好地区分正常和故障状态。 接下来,LSTM层用于捕捉振动信号的序列特征。由于轴承信号具有时序性,LSTM模型能够对连续的振动信号序列进行建模。LSTM层通过学习轴承信号的长期依赖性,提取了更多的时序信息,提高了轴承故障的诊断准确性。 最后,通过连接CNN和LSTM层,CNN-LSTM模型能够同时捕捉到时域和序列信息,有效地提高了轴承故障诊断的精度。通过训练大量的正常和故障样本,模型学习到了振动信号的特征模式,并能够准确地判断轴承是否发生了故障。 总的来说,CNN-LSTM模型在CWru轴承故障诊断中的应用具有显著的优势。它能够从信号的时域和序列特征中提取有效的信息,并准确诊断轴承的故障状态。这种模型为轴承的预防性维护提供了有效的工具,能够降低故障率,提高设备的可靠性和工作效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值