Nano Energy 水下机器人近场感知与速度评估由深度学习辅助的仿海豹胡须传感器实现 本研究设计了一种仿生水下摩擦电胡须传感器,可被动感知多种水动力流场,有望成为水下航行器在本地导航任务中的整合工具。
如何有效参与机器人顶会?——周易教授PRE-IROS 2024分享 湖南大学机器人学院周易教授在PRE-IROS 2024上分享自身参会经验,全面总结了学术会议的好处以及参会建议等内容。本文整理了周易教授在直播中分享的干货。
机器人顶会参会经验——许华哲老师PRE-IROS 2024分享 清华大学交叉信息学院许华哲老师在PRE-IROS 2024上分享了机器人顶会参会技巧,包括社交和活动选择方面的实用建议等内容。本文整理了许老师在直播中分享的干货。
机器人顶会的方向布局和投稿准备经验分享 浙江大学控制科学与工程学院王越教授在PRE-IROS 2024会议上系统地总结了机器人顶会的投稿策略和论文准备经验。本文整理了王老师的演讲内容,包括如何在众多的会议中选择合适的平台,如何准备高质量的论文,如何与导师有效合作等。
机器人顶刊IEEE T-RO发布无人机动态环境高效表征成果:基于粒子的动态环境连续占有地图 本研究有效提高了动态环境中障碍物建模的精度和效率。NOKOV度量动作捕捉系统助力评估动态占用地图在速度估计方面的性能。
面向新手在无人机竞速场景下的飞行辅助系统——浙大 FAST-Lab 高飞团队 ICRA 论文三项 Best Paper 入围 浙江大学 FAST Lab 钟宇航同学设计了一套无人机竞速辅助飞行系统,帮助新手快速上手参与无人机竞速比赛。论文获 ICRA 三项 Best Paper 提名。在真实实验中使用NOKOV度量动作捕捉验证了系统的效率。
绳牵引并联机器人动态避障方法 哈尔滨工业大学(深圳)熊昊老师团队最新研究成果:提出了一种基于强化学习的避障控制器,在实验中使用NOKOV度量动作捕捉系统实时获取绳索、移动基座的位置,以及动态障碍物的位置和形状信息。
哈工大研究成果:集中式轨迹规划也能快速响应,机器人编队增量重规划算法 哈尔滨工业大学研究团队提出一种新颖的机器人编队集中式轨迹生成方法,将著名的运动规划方法GPMP2扩展到多机器人场景,采用稀疏高斯过程模型,高效地计算多机器人运动轨迹。利用NOKOV度量动作捕捉系统验证了算法的效率、适应性和可扩展性。
中科院自动化所:基于关系图深度强化学习的机器人多目标包围问题新算法 中科院自动化所蒲志强教授团队,提出一种基于关系图的深度强化学习方法,应用于多目标避碰包围(MECA)问题,使用NOKOV度量动作捕捉系统获取多机器人位置信息,验证了方法的有效性和适应性。研究成果在2022年ICRA大会发表。
Pixhawk+PX4+VRPN +NOKOV无人机飞控平台动捕数据传输 NOKOV度量动作捕捉系统可以很好的适配PX4无人机飞控平台。进行数据通信的时候,使用SDK或者VRPN的方式都是可以的。本文演示NOKOV度量动作捕捉系统通过VRPN与PX4平台进行数据传输的方法。
Windows+Python+NOKOV+SDK进行动作捕捉数据传输 NOKOV度量动作捕捉系统可以与市面上主流的操作系统和编程语言实现通信。可以在Windows系统Python语言环境下通过SDK进行动作捕捉数据传输。
Windows系统C++语言环境下通过SDK进行动作捕捉数据传输 NOKOV度量动作捕捉系统可以与市面上主流的操作系统和编程语言实现通信。可以在Windows系统C++语言环境下通过SDK进行动作捕捉数据传输。
LabVIEW通过SDK接收NOKOV动作捕捉数据 运动分析、VR、机器人等应用中常使用LabVIEW对动作捕捉数据进行实时解算。NOKOV度量动作捕捉系统支持通过SDK与LabVIEW进行通信,将动作数据传入LabVIEW。