ACM-ICPC 2017 Asia HongKong 解题报告 ACM-ICPC 2017 Asia HongKong 解题报告任意门:https://nanti.jisuanke.com/?kw=ACM-ICPC%202017%20Asia%20HongKong按AC次序:D - Card collectionIn an online game, a player can collect different types of power card...
D. Frets On Fire 【二分,前缀和】 (Codeforces Global Round 2) 题目传送门:http://codeforces.com/contest/1119/problem/DD. Frets On Firetime limit per test1.5 secondsmemory limit per test256 megabytesinputstandard inputoutputstandard outputMiyako came to...
Attention和Transformer【datewhale task02】 一、Attention基于循环神经网络(RNN)一类的seq2seq模型,在处理长文本时遇到了挑战,而对长文本中不同位置的信息进行attention有助于提升RNN的模型效果。1.1 Seq2Seq框架全称是:sequence to sequence(序列到序列)来源于两篇论文:https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdfhttp://emnlp2014
吃瓜笔记一【Datawhale Task01】 第一章 绪论1.1 引言什么是“机器学习” (machine learning)机器学习是一门研究如何通过计算的手段,利用经验改善系统自身的性能的学科输入数据 -> 学习算法->得到模型-> 输出结果(预测、判断等)1.2 基本术语1.2.1 关于数据数据集: 100个西瓜 样本(示例):1个西瓜 属性(特征):色泽、根蒂、敲声 样本空间(属性空间、输入空间):属性张成的空间,例如 ...
MXNet报Running performance tests to find the best convolution algorithm 使用MXNet进行模型训练,一直提示如下:Running performance tests to find the best convolution algorithm, this can take a while... (set the environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable)并且保持在这个状...
优雅地在word中插入代码 一、工具方法1.打开这个网页PlanetB;方法2.或者谷歌搜索syntax highlight code in word documents,检索结果的第一个。如下图:PS. 方法1和2打开的为同一个网站。二、步骤1.将你需要插入在word中的代码完整的复制到该网站提示的文本框内,选择你的代码类型,如C,C++,HTML等,并点击提交。如下图:2.该网页会自动...
CUDA10.1下的WIN10使用pip安装MXNet Windows10使用pip安装MXNet GPU版本的那些坑安装MXNet GPU版本的前提是已经根据官方要求安装好了CUDA和cudnn。本机具体环境:Windows10CUDA version:CUDA 10.1cudnn version:cudnn 7.6.5python:3.6官网指南:官网链接:http://mxnet.incubator.apa...
图片传输中的转码问题 图片在网络传输中的转码问题使用opencv打开图片后得到numpy.array的数据格式。一下代码实现 ndarray 到 base64 到 string 的转换def img_test(filepath): img = cv2.imread(filepath) oshape = img.shape # print(img.shape) #ndarray ...
Android设置TextView文字居中 设置TextView文字居中:一:在xml文件(布局文件)中设置:android:gravity="center"这里需要考虑不同的布局,在constraint布局中有,但在其他的布局中未必会有。这里是textView中文字居中二:在程序中设置:m_TxtTitle.setGravity(Gravity.CENTER);对整个控件操作,出现”layout”就是控件对整...
Task05: 卷积神经网络基础;leNet;卷积神经网络进阶 Task05: 卷积神经网络基础;leNet;卷积神经网络进阶卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。1、卷积神经网络基础1.1 二维卷积层卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。最常见的二维卷积层,它有高和宽两个空间维度,常用来...
Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 Task03: 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶1、过拟合、欠拟合及其解决方案2、梯度消失、梯度爆炸3、循环神经网络进阶...
Task02:文本预处理;语言模型;循环神经网络基础 Task02: 文本预处理;语言模型;循环神经网络基础1、文本预处理摘要:自然语言处理NLP(Natural Language Processing),顾名思义,就是使用计算机对语言文字进行处理的相关技术。在对文本做分析时,我们一大半的时间都会花在文本预处理上,而中文和英文的预处理流程稍有不同。文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理...
Task01:线性回归;Softmax与分类模型、多层感知机 Task01:线性回归;Softmax与分类模型、多层感知机目录Task01:线性回归;Softmax与分类模型、多层感知机1、线性回归1.1 线性回归的基本要素1.2 矢量计算表达式2、softmax回归2.1 分类问题2.2 softmax运算2.3 交叉熵损失函数3、多层感知机 3.1 隐藏层 3.2 激活函数 3.3 多层感知机定义...
Task01:机器学习综述 机器学习概述:机器学习是一门多领域交叉学科,涉及概率论,统计学,逼近论,凸分析,算法复杂度理论等多门学科。专门研究计算机怎么样模拟或者实现人类的学习行为,以获取新的知识和技能,重新组织已有的知识结构使之不断完善自身的性能。他是人工智能的核心,是使计算机具有智能的根本途径。一、机器学习的发展时间段 机器学习理论 代表性成果 二十世纪五十年代初 人工智能研究处于推理期...
Leetcode-Python3 Leetcode-Python3 [1.两数之和]给定一个整数数组 nums和一个目标值 target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。示例:给定 nums = [2, 7, 11, 15], target = 9因为 nums[0] + nums[1] = 2 ...
Python【学习笔记】 调用函数加括号和不加括号的区别 调用函数时加括号与不加括号的区别:一、不带括号时,调用的是这个函数本身 ,是整个函数体,是一个函数对象,不须等该函数执行完成二、带括号(参数或者无参),调用的是函数的执行结果,须等该函数执行完成的结果# -*- coding:utf-8 -*- defbracket(data): return data if __name__ == '__main__': ...
Python学习【二】流程控制 一、if 语句与 C 不同,Python 的 if 没有大括号 { }代表作用域, 而是通过相同的缩进来表示在同一块作用域,而且判断语句最后要加 :举个栗子:x = int(input("Please enter an integer: "))if x < 0: x = 0 print('Negative changed to zreo')elif x =...
Python学习【一】数字 、 字符串、列表 一、数字常用运算符 + 加法 - 减法 * 乘法 ** 幂运算 (x**y 表示x的y次方) / 除法(只返回浮点类型) // 整数除法(返回求整除法) () 用于分组 % 求模运算 = 变量赋值 注意:①变量在使用前必须”定义”(赋值)。②...
CUDA学习[二]:编程技巧1.0 2.1.6 验证核函数三种方法:①编写一个相同功能的主机函数验证核函数的结果。②在Fermi及更高版本的设备端的核函数中使用 printf 函数③可以将执行参数设置为 <<<1, 1>>>,因此强制使用一个块和一个线程执行核函数,这模拟了串行执行程序。2.1.7 处理错误由于许多 CUDA 函数是异步的,所以有时可能很难确定某个错误是由哪...