Task05: 卷积神经网络基础;leNet;卷积神经网络进阶

Task05: 卷积神经网络基础;leNet;卷积神经网络进阶

目录

Task05: 卷积神经网络基础;leNet;卷积神经网络进阶

1、卷积神经网络基础

1.1 二维卷积层

1.2 填充和步幅

1.3 多输入通道和多输出通道

1.4 卷积层的简洁实现

1.5 池化层

2、LeNet

3、卷积神经网络进阶

3.1 深度卷积神经网络(AlexNet)

3.2 使用重复元素的网络(VGG)

3.3 网络中的网络(NiN)

3.4 含并行连结的网络(GoodLeNet)


1、卷积神经网络基础

卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。

1.1 二维卷积层

卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。最常见的二维卷积层,它有高和宽两个空间维度,常用来处理图像数据。

1.1.1 二维互相关计算

虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。在二维卷积层中,一个二维输入数组和一个二维核(kernel)数组通过互相关运算输出一个二维数组。 我们用一个具体例子来解释二维互相关运算的含义。如图5.1所示,输入是一个高和宽均为3的二维数组。我们将该数组的形状记为3×3或(3,3)。核数组的高和宽分别为2。该数组在卷积计算中又称卷积核或过滤器(filter)。卷积核窗口(又称卷积窗口)的形状取决于卷积核的高和宽,即2×2。下图中的阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:0×0+1×1+3×2+4×3=199。

在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应位置的元素。上图中的输出数组高和宽分别为2,其中的4个元素由二维互相关运算得出:

下面我们用corr2d函数实现二维互相关运算,它接受输入数组X与核数组K,并输出数组Y

import torch 
import torch.nn as nn

def corr2d(X, K):
    H, W = X.shape
    h, w = K.shape
    Y = torch.zeros(H - h + 1, W - w + 1)
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
    return Y

 

1.1.2 二维卷积层

二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏差来得到输出。卷积层的模型参数包括了卷积核和标量偏差。在训练模型的时候,通常我们先对卷积核随机初始化,然后不断迭代卷积核和偏差。

下面基于corr2d函数来实现一个自定义的二维卷积层。在构造函数__init__里我们声明weightbias这两个模型参数。前向计算函数forward则是直接调用corr2d函数再加上偏差。

class Conv2D(nn.Module):
    #构造函数
    def __init__(self, kernel_size):
        super(Conv2D, self).__init__()
        #初始化卷积核
        self.weight = nn.Parameter(torch.randn(kernel_size))
        #初始化偏差
        self.bias = nn.Parameter(torch.randn(1))

    #前向传播
    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

 

1.1.3 互相关计算与卷积运算

实际上,卷积运算与互相关运算类似。为了得到卷积运算的输出,我们只需将核数组左右翻转并上下翻转,再与输入数组做互相关运算。可见,卷积运算和互相关运算虽然类似,但如果它们使用相同的核数组,对于同一个输入,输出往往并不相同。

由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

1.1.4 特征图与感受野

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素x的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做x的感受野(receptive field)。

以上图为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图5.1中形状为2×2的输出记为Y,并考虑一个更深的卷积神经网络:将Y与另一个形状为2×2的核数组做互相关运算,输出单个元素z。那么,z在Y上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

 

1.2 填充和步幅

一般来说,假设输入形状是nh×nw,卷积核窗口形状是kh×kw,那么输出形状将会是:

所以卷积层的输出形状由输入形状和卷积核窗口形状决定。卷积层的两个超参数,即填充和步幅。它们可以对给定形状的输入和卷积核改变输出形状。

  • 填充可以增加输出的高和宽。这常用来使输出与输入具有相同的高和宽。
  • 步幅可以减小输出的高和宽,例如输出的高和宽仅为输入的高和宽的1/n(n为大于1的整数)。

1.2.1 填充

填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素)。下图里我们在原输入高和宽的两侧分别添加了值为0的元素,使得输入高和宽从3变成了5,并导致输出高和宽由2增加到4。图5.2中的阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:0×0+0×1+0×2+0×3=0。

一般来说,如果在高的两侧一共填充ph行,在宽的两侧一共填充pw列,那么输出形状将会是:

也就是说,输出的高和宽会分别增加ph和pw。

在很多情况下,我们会设置ph=kh−1和pw=kw−1来使输入和输出具有相同的高和宽。这样会方便在构造网络时推测每个层的输出形状。

假设这里kh是奇数,我们会在高的两侧分别填充ph/2行。如果kh是偶数,一种可能是在输入的顶端一侧填充⌈ph/2⌉行,而在底端一侧填充⌊ph/2⌋行。在宽的两侧填充同理。

卷积神经网络经常使用奇数高宽的卷积核,如1、3、5和7,所以两端上的填充个数相等。

对任意的二维数组X,设它的第i行第j列的元素为X[i,j]。当两端上的填充个数相等,并使输入和输出具有相同的高和宽时,我们就知道输出Y[i,j]是由输入以X[i,j]为中心的窗口同卷积核进行互相关计算得到的。

 

1.2.2 步幅

卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。我们将每次滑动的行数和列数称为步幅(stride)

下图展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。可以看到,输出第一列第二个元素时,卷积窗口向下滑动了3行,而在输出第一行第二个元素时卷积窗口向右滑动了2列。当卷积窗口在输入上再向右滑动2列时,由于输入元素无法填满窗口,无结果输出。图5.3中的阴影部分为输出元素及其计算所使用的输入和核数组元素:0×0+0×1+1×2+2×3=8、0×0+6×1+0×2+0×3=6。

一般来说,当高上步幅为sh,宽上步幅为sw时,输出形状为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值