目录
方案一:GenericJackson2JsonRedisSerializer
方案二:Jackson2JsonRedisSerializer
方案一:GenericJackson2JsonRedisSerializer
方案二:Jackson2JsonRedisSerializer
引言
一、JDK 序列化
我们在使用spring-data-redis时可以直接注入RedisTemplate对redis进行操作:
@Autowired
private RedisTemplate redisTemplate;
@Test
void testRedisTemplate() {
redisTemplate.opsForValue().set("test:1","hello");
}
但是数据库中的结果是这样的:
之所以产生以下结果是因为:在java中,使用RedisTemplate但是没有配置序列化器的话,会默认使用JDKSerializationRedisSerializer对当前的key和value进行序列化,而序列化的结果就是我们所看到的形式。JDKSerializationRedisSerializer进行序列化会把java对象转成为字节流,字节流以16进制形式存储在redis中,从而出现了\xac\xed\x00\x05
这样的内容。\xac\xed是用来标识这是java序列化后的字节流。
JDK 序列化存在的四大问题
-
可读性差
数据以二进制形式存储,无法直观阅读键值内容。 -
序列化后数据体积大
Java 原生序列化会包含大量元数据,像类的完整路径、版本号等,这会使序列化后的数据体积大幅增加。在存储大量数据时,会占用更多 Redis 内存空间。
-
兼容性问题
JDK序列化
依赖 Java 类的结构,若类的结构发生变化(如添加、删除字段,修改字段类型等),可能导致反序列化失败。此外,不同 Java 版本的序列化机制可能存在差异,跨版本使用时也容易出现兼容性问题。 -
跨语言支持差
JDK序列化
是基于 Java 语言的,序列化后的数据只能在 Java 环境中进行反序列化。如果系统涉及多种编程语言,使用该序列化器会导致数据无法在不同语言间共享和交互。
解决方案:自定义序列化配置
为避免上述问题,我们需要配置序列化器,而配置序列化器主要有两种方法
方案一:GenericJackson2JsonRedisSerializer
1.创建并配置一个RedisTemplate 的bean 在该bean中自定义序列化器
而在自定义序列化器的过程中我们会用到两种序列化方式
1.RedisSerializer.string()
由spring data redis提供,用于返回StringRedisSerializer实例StringRedisSerializer
基于 UTF-8
编码实现字符串和字节数组之间的转换。在序列化过程中,将java字符串按UTF-8编码格式序列化成字节数组形式。这是因为redis存储数据是以字节形式存在,除此之外很多存储系统(如数据库,文件系统)都是以字节形式存储数据,所以在使用数据的持久化储存时需要把java字符串类型序列化成字节数组形式。
2.GenericJackson2JsonRedisSerializer()
由spring data redis提供,基于Jackson库实现,用语将java对象序列化成json形式的字节数组,以及将json 格式的字节数组反序列化为 Java 对象。
所以我们分析一下,我们要将string类型的key和hashkey使用StringRedisSerializer进行序列化,而可能是java对象的value使用GenericJackson2JsonRedisSerializer进行序列化。
配置方法:
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate<String,Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
RedisTemplate<String, Object> template = new RedisTemplate<>();
GenericJackson2JsonRedisSerializer jsonSerializer = new GenericJackson2JsonRedisSerializer();
template.setKeySerializer(RedisSerializer.string());
template.setValueSerializer(jsonSerializer);
template.setHashKeySerializer(RedisSerializer.string());
template.setHashValueSerializer(jsonSerializer);
template.setConnectionFactory(redisConnectionFactory);
return template;
}
}
存储形式:
{
"@class": "com.ymh.pojo.entity.User",
"id": 1,
"name": "zhangsan",
"age": 20
}
现在实体类和键名都是字节数组形式,不再是十六进制字节流。解决了JDKSerializationRedisSerializer序列化后可读性差,跨语言支持差的问题。
但是我们在redis中看到了"@class": "com.ymh.pojo.entity.User"这样的内容,这是由于
GenericJackson2JsonRedisSerializer 在序列化后产生的用于辅助GenericJackson2JsonRedisSerializer 进行反序列化操作的字段。在反序列化时jackson库会读取@class字段的值也就是类的全限定类名,并找到对应路径下的类,将json数据反序列化成类对应的java对象。
潜在问题
-
数据冗余:
@class
字段会增加存储数据的体积,特别是在存储大量数据时,会占用更多的 Redis 内存空间。 -
类路径变更问题:如果 Java 类的包名、类名发生变化,或者类被移动到其他目录中,反序列化时由于
@class
记录的类路径失效,会导致反序列化失败。基于此我们来讲讲java对象进行序列化时,可以用到的另一种序列化器的配置。
方案二:Jackson2JsonRedisSerializer
Jackson2JsonRedisSerializer由spring data redis提供,用于将java对象序列化成为json格式的字节数组,并在反序列化时将json字节数组反序列化成java对象。但与GenericJackson2JsonRedisSerializer不同,Jackson2JsonRedisSerializer不会在redis中添加@class字段。
具体配置:
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
RedisTemplate<String, Object> template = new RedisTemplate<>();
template.setConnectionFactory(redisConnectionFactory);
Jackson2JsonRedisSerializer<Object> jsonSerializer = new Jackson2JsonRedisSerializer<>(Object.class);
template.setKeySerializer(RedisSerializer.string());
template.setValueSerializer(jsonSerializer);
template.setHashKeySerializer(RedisSerializer.string());
template.setHashValueSerializer(jsonSerializer);
template.afterPropertiesSet();
return template;
}
}
储存形式:
{
"id": 1,
"name": "lisi",
"age": 20
}
可以看到redis中不仅不存在JDKSerializationRedisSerializer序列化产生的可读性差,跨语言支持差的问题,同时也没有GenericJackson2JsonRedisSerializer 序列化后在redis增加@class字段造成储存冗余的问题。
总结
1. 默认 JDK 序列化的问题
-
问题表现
使用未配置的RedisTemplate
会默认采用JDKSerializationRedisSerializer
,导致存储数据为二进制流(如\xac\xed\x00\x05t\x00\nhello
),存在以下问题:-
可读性差:二进制数据无法直观阅读。
-
体积膨胀:包含类元数据,内存占用高。
-
兼容性差:类结构变更或跨 Java 版本易失败。
-
跨语言限制:仅适用于 Java 生态。
-
2. 解决方案:自定义序列化配置
通过配置 RedisTemplate
的序列化器,优化存储格式。常用两种 Jackson 序列化方案:
方案一:GenericJackson2JsonRedisSerializer
机制
-
序列化时添加
@class
字段记录类型信息(如"@class": "com.example.User"
)。 -
反序列化时通过
@class
动态解析对象类型。
优缺点
-
优点:支持多态类型,反序列化自动识别对象类型。
-
缺点:
-
数据冗余:
@class
字段增加存储体积。 -
类路径耦合:类名或包名变更会导致历史数据反序列化失败。
-
安全风险:反序列化时依赖类路径,可能引发反序列化攻击。
-
方案二:Jackson2JsonRedisSerializer
机制
-
纯 JSON 序列化,不添加额外类型信息。
-
反序列化时需显式指定目标类型。
优缺点
-
优点:
-
数据精简:无额外元数据,存储体积小。
-
跨语言友好:标准 JSON 格式,通用性强。
-
-
缺点:
-
类型强耦合:需在序列化时指定类型,反序列化时需明确知道类型。
-
多态支持弱:无法自动处理继承或复杂类型集合。
-
3. 关键对比与选型建议
特性 | JDKSerializationRedisSerializer | GenericJackson2JsonRedisSerializer | Jackson2JsonRedisSerializer |
---|---|---|---|
存储格式 | 二进制流 | JSON(含 @class 类型信息) | 纯 JSON |
可读性 | ❌ 差 | ✅ 优 | ✅ 优 |
存储体积 | ❌ 大 | ⚠️ 中(含元数据) | ✅ 小 |
跨语言支持 | ❌ 仅 Java | ✅ 优(需其他语言解析 @class ) | ✅ 优 |
多态类型支持 | ✅ 优 | ✅ 优 | ❌ 差 |
反序列化类型安全 | ⚠️ 依赖类路径 | ⚠️ 依赖类路径 | ✅ 显式指定类型,更安全 |
选型建议
-
简单类型 & 明确类型:优先选择
Jackson2JsonRedisSerializer
,需显式指定类型。 -
复杂对象 & 多态需求:使用
GenericJackson2JsonRedisSerializer
,但需接受@class
冗余。 -
避免使用 JDK 序列化:除非需兼容旧系统或处理特殊二进制数据。