图像识别专题一(CIECAM颜色模型)----董靓

根据整理,找出来的用于颜色识别的主要模型:

1、CIECAM97/02(数字表示提出年份)

能较好地预测单的色刺激在 CIECAM02及以前的各种色貌模型能较好地预测单一的色刺激在 差异很大的观察条件下的色貌,当它们应用到图像时,图像像素 被当作完全独立的色刺激对待,没有考虑颜色的空间特性对视觉 的影响。 

遵循的原则:

1.为了使模型能够适用于各种情况,模型要有复杂的功能;

2.对动态范围设定最大值,使模型能够覆盖很广的刺激亮度; 

3.模型要包括视杆细胞在很低的暗适应水平下的刺激反应; 

4.能够预测不同亮度背景下的色貌,将观察环境条件简化成三 种类型平均条件较暗条件 种类型:平均条件(如印刷品和纺织品)、较暗条件(如显示器和电视) 和黑暗条件(如投影图像);

5.从CIE标准色度观察者到视锥光谱敏感度的变换采用线性关系, 并用曲线来估计视杆细胞的视觉; 并用曲线来估计视杆细胞的视觉; 

6.用不完全适应程度因子来说明完全适应和无适应之间的状态; 

7.预测各种感知属性:色相角、色相组成、心理明度、绝对明 度、彩度、绝对彩度和饱和度。在某些应用场合中,所有这 些因素都很重要; 

8.应该包含向前和向后的变换这对于色彩管理系统非常重要; 

9.除了上述的必要功能,不要再复杂; 

10应该有两套模型分别用于所有可能情况和受限情况

11.对实验数据集的预测,如LUTCHI数据和色适应数据集,要比 现有最好的色貌模型表现好或相同; 

12.对不相关颜色也要有效,如黑暗环境中的孤立颜色。而且, 该模型应该能预测同时颜色对比效应 该模型应该能预测同时颜色对比效应。


另已搜集到详细的算法步骤,见下方百度文库链接,以及word文档整理。

来源:报读文库https://wenku.baidu.com/view/a9d4a85bf12d2af90242e685.html


阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭