图像识别(HOG)----董靓

方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征

1、主要思想:在一副图像中,局部目标的表象和形状能够被梯度或边缘的方向密度分布很好地描述。其本质为:梯度的统计信息,而梯度主要存在于边缘的地方。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。

2、实现方法:首先将图像分成小的连通区域,这些连通区域被叫做细胞单元。然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。最后把这些直方图组合起来,就可以构成特征描述符。

3、性能提高:将这些局部直方图在图像的更大的范围内(叫做区间)进行对比度归一化,可以提高该算法的性能,所采用的方法是:先计算各直方图在这个区间中的密度,然后根据这个密度对区间中的各个细胞单元做归一化。通过这个归一化后,能对光照变化和阴影获得更好的效果。

以上来自百度百科:https://baike.baidu.com/item/HOG/9738560?fr=aladdin

                                                                                                                                                                

在HOG中,对一幅图像进行了如下划分: 图像(image)->检测窗口(win)->图像块(block)->细胞单元(cell)

1.色彩和伽马归一化为了减少光照因素的影响,首先需要将整个图像进行规范化(归一化)。在图像的纹理强度中,局部的表层曝光贡献的比重较大,所以,这种压缩处理能够有效地降低图像局部的阴影和光照变化。 

2.图像的梯度针对的是每一个像素计算得到,然后再cell中进行方向梯度直方图的构建,在block中进行对比度归一化操作。 
3.由于窗口的滑动性与块的滑动行,窗口与块都会出现不同程度的重叠(由步长决定),此时在块内划分出的cell就会多次出现,这就意味着:每一个细胞单元的输出都多次作用于最终的描述器。

详见CSDN网址:https://blog.csdn.net/chaipp0607/article/details/70888899,里面有具体的公式和openCV代码!!!



阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

图像识别(HOG)----董靓

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭