习题6-5 使用函数验证哥德巴赫猜想 (20分)

本题要求实现一个判断素数的简单函数,并利用该函数验证哥德巴赫猜想:任何一个不小于6的偶数均可表示为两个奇素数之和。素数就是只能被1和自身整除的正整数。注意:1不是素数,2是素数。

函数接口定义:

int prime( int p );
void Goldbach( int n );

其中函数prime当用户传入参数p为素数时返回1,否则返回0;函数Goldbach按照格式“n=p+q”输出n的素数分解,其中p≤q均为素数。又因为这样的分解不唯一(例如24可以分解为5+19,还可以分解为7+17),要求必须输出所有解中p最小的解。

裁判测试程序样例:

#include <stdio.h>
#include <math.h>

int prime( int p );
void Goldbach( int n );

int main()
{
    int m, n, i, cnt;

    scanf("%d %d", &m, &n);
    if ( prime(m) != 0 ) printf("%d is a prime number\n", m);
    if ( m < 6 ) m = 6;
    if ( m%2 ) m++;
    cnt = 0;
    for( i=m; i<=n; i+=2 ) {
        Goldbach(i);
        cnt++;
        if ( cnt%5 ) printf(", ");
        else printf("\n");
    }

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

89 100

输出样例:

89 is a prime number

90=7+83, 92=3+89, 94=5+89, 96=7+89, 98=19+79
100=3+97,

#include<math.h>
int prime( int p )
{
    int m,i;
    if(p<2) return 0;
    else
    {
        for(i=2;i<=p;i++)
        {
            m=p%i;
            if(m==0)break;
        }
        return i<p?0:1;
    }
}
void Goldbach( int n )
{
    int prime( int p );
    for(int k=1;k<=n/2;k++)
    if(prime(k)==1&&prime(n-k)==1)
    {printf("%d=%d+%d",n,k,n-k);break;}
}
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页