给出nnn个班级,每个班级有aaa个人bbb杯奶茶,每个同学能且只能拿一杯奶茶,并且不能拿自己班的奶茶。求最多喝到奶茶的人数。
Source:2019 Multi-University Training Contest 8
比赛的时候由于数据太水,大多数人都用贪心过了,但是实际上这道题是一个二分图最大匹配的问题。
对于二分图(U+V,E)(U+V,E)(U+V,E),左边顶点表示学生,右边节点表示奶茶,学生和别的班的奶茶之间有边。答案是二分图最大匹配的大小。
根据Hall’s marriage theorem:
∣M∣=∣U∣−maxS⊂U(∣S∣−∣N(S)∣)where N(S) denotes the neighborhood of S.\vert M\vert =\vert U\vert - \max_{S\subset U}(\vert S\vert-\vert N(S)\vert) \\where\ N(S)\ denotes\ the\ neighborhood\ of\ S. ∣M∣=∣U∣−S⊂Umax(∣S∣−∣N(S)∣)where N(S) denotes the neighborhood of S.
对于取得maxS⊂U(∣S∣−∣N(S)∣)\max_{S\subset U}(\vert S\vert-\vert N(S)\vert)maxS⊂U(∣S∣−∣N(S)∣)的集合SSS,总共有三种情况:
- SSS为空集,∣M∣=∣U∣\vert M\vert =\vert U\vert∣M∣=∣U∣.
- 所有的student来自同一个班级,这样的话就减去这个班的所有人.
- student来自不同的班级,∣M∣=∣V∣\vert M\vert =\vert V\vert∣M∣=∣V∣.
//std
#include <bits/stdc++.h>
using namespace std;
int n;
long long a[1 << 20], b[1 << 20];
int main() {
int T; scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%lld%lld", a + i, b + i);
long long totu = accumulate(a, a + n, 0ll);
long long totv = accumulate(b, b + n, 0ll);
long long ans = min(totu, totv);
for (int i = 0; i < n; i++) ans = min(ans, totu + totv - a[i] - b[i]);
printf("%lld\n", ans);
}
return 0;
}
本文探讨了一个关于班级和奶茶的有趣问题,通过构建二分图模型,将学生和奶茶作为图的两边,解决最多人喝到奶茶的数学挑战。文章深入分析了Hall's marriage theorem,提供了一种高效的解决方案,并附带标准代码实现。
8万+

被折叠的 条评论
为什么被折叠?



