小样本问题

主流深度学习模型以大量监督数据为驱动,导致模型泛化能力依赖于监督数据的数量和质量。相比之下,人类拥有利用过去所学知识快速学习新概念的能力。因此,研究者们希望构建一种新的训练方法,使模型仅在少量训练样本的情况下学习,并具备良好的泛化能力。

目标及核心问题:仅使用少量标签数据训练模型,使之具有良好的泛化能力。

椭圆代表模型,最优解不一定在模型内,{h}_I表示为通过数据训练得到的经验风险,当数据足够多时其趋于h^{*},小样本就如右图,两者之间的距离就是用经验风险替代模型期望风险带来的误差。

解决问题的三个角度:

1)data:数据增强,增加数据;

 使用更多的数据作为先验来减少误差,两种方法:①将现有数据集进行变换,改善其分布,创造一些伪标签的数据(人工数据),比如计算机视觉里面进行训练前一般都会进行数据增强,将图片旋转一下位置或裁剪等,这些方法属于手动方法;还有一种方法是学习一种变换,将目前的数据集变换到另一个分布里,然后用变换后的增强数据进行训练;②是不用原来的数据集,而是借鉴其它数据集,比如一些没有标签的数据集或者相似的数据集。通过训练数据集训练一个小的模型对无标签数据的标签进行预测,然后利用原训练数据和伪标签数据组合成新的数据集(有噪声的);对相似数据集进行采样,加权得到新的数据集。

2)Model:缩小搜索范围,从另一个起点出发,限制假设空间;

 

 多任务学习:数据集里的其它任务共享参数,如果参数在多个任务上都表现得很好的话,该参数就被限制住了

硬参数共享:多个任务相互限制和辅助,软参数共享:参数相似

嵌入学习:把相似的任务放到一起,不相似的任务分开

 嵌入学习(情景训练法)主要用在元学习方法上,目前主要用这种方法。

额外的记忆:检索记忆和存储记忆交互

生成模型:差不多的意思,主要是限制其分布,过于复杂,不稳定

3)Algorithm:使用更高效的算法,很好的搜索策略,不需要太多样本

 正则微调:

 组合参数:

 把与目前任务相似的之前任务参数组合在一起,减缓搜索次数和样本数量

新参数微调:

 用少量样本训练新分类器的少量参数,

微调元模型参数(通用初始化参数)一个经典的优化方法

适用于所有任务的参数 \Theta,在遇到新任务时,只需要少量的样本来更新

元优化器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值