【论文翻译】异构信息网络中的深层集合分类 

异构信息网络中的深层集合分类 

摘要

在过去十年中,集体分类引起了相当大的关注,在这十年中,一组实例中的标签是相互关联的,应当集体推断,而不是独立地推断。传统的集体分类方法主要集中在开发简单的关系特征(例如计数和存在于相邻节点上的聚合器)。然而,许多现实应用程序涉及到实例之间的复杂依赖关系,这些依赖关系在网络中是模糊的/隐藏的。为了在集体分类中捕获这些依赖关系,我们需要超越简单的关系特性,并提取实例之间的深层依赖关系。本文研究了异构信息网络中的深层次集体分类问题,它涉及到不同类型的自相关,从简单到复杂的关系。与传统的自相关不同,复杂自相关由网络中的链路显式给出,复杂自相关在HIN中是模糊的/隐藏的,应该按照层次顺序从现有链接中推断出来。由于节点间依赖性的多样性和关系特性的复杂性,这一问题具有很高的挑战性。本研究提出了一种深卷积集体分类方法,即图形感知,以了解HIN中的深层关系特征。该方法能自动生成复杂度不同的关系特征层次。通过对四个现实世界网络的大量实验表明,该方法能够通过考虑HINs中的深层关系特征来提高集体分类性能。

1.介绍

集体分类[30]旨在利用一组相互连接的实例之间的标签自相关,并集体预测它们的类标签。在许多关系数据中,不同实例的标签可以是相关的。例如,在书目网络中,由同一作者撰写的论文比由不同作者撰写的论文更有可能共享相似的主题。一个有效的关系数据模型应该能够捕获不同实例之间的依赖关系,并共同进行分类。在这一挑战的推动下,近年来对集体分类进行了广泛的研究[1,23,27,30]

以往关于集合分类的工作主要集中在传统的关系模型上,这在很大程度上依赖于专家对关系特征的设计。一方面,传统的关系特征通常被定义为节点的直接邻居的简单聚合,例如它们的标签的平均值或计数。另一方面,最近关于深度学习模型的研究[19]在许多领域提供了端到端的自动特征学习,如视觉[5]、语音和自然语言处理[32]。然而,目前对深度学习的研究主要集中在内容特征上,如图像数据中的视觉特征。它们还没有被用来在集体分类中提取深层关系特征,在关系学习中捕捉实例间的复杂自相关。

图1:DBLP网络中简单链接和隐藏链接的示例。这里实线表示DBLP网络中存在的简单关系,虚线表示现实世界中存在的隐藏关系,但应该从DBLP网络中推断出来,即合著者(蓝线)、顾问-顾问(粉红线)和共享顾问(红线)。

在本文中,我们研究了HINs中的深层集合分类问题,它涉及到实例之间不同类型的自相关的层次结构。例如,在图1中,我们展示了一个深度关系学习任务,即预测书目网络中作者的研究领域(标签)。不同的作者不仅通过合著关系显式地相互联系,而且通过潜在关系(如顾问-顾问、共享顾问、同事)隐式地联系。图1中的虚线表示真实世界中存在的作者之间的隐式关系,但只能在DBLP网络中进行推断。

尽管HINs中已有关于集体分类的方法[16,37],但由于以下原因,深层集体分类仍然是一个开放且具有挑战性的问题:

  • 深层关系特征:问题的一个主要挑战是HINs可能涉及不同类型自相关的层次结构,从简单到复杂。复杂的关系不是由网络中的链接直接给出的,而是由关系特征的层次结构推断出来的。例如,在图1中的DBLP网络中,作者之间存在共同作者关系(简单关系);顾问-顾问关系(隐藏关系)和共享顾问关系(复杂关系)。复杂关系,例如share advisor,不能直接由浅层关系特征(如合著者关系)建模,但可以从深层关系特征的层次结构中推断出来,从简单关系特征(合著者)、中等关系特征(advisor advise)到复杂关系特征(share advisor),如图2所示。例如,要推断advisor-adise关系,我们可以发现两个作者共享相似的相邻节点(这些邻居很可能是他们的顾问和研究组中的其他学生)。由于异构网络中实例之间的关系复杂而模糊,我们需要一个深层关系学习模型来提取实例之间的深层依赖层次。
  • 关系特征中的混合复杂性:问题的第二个主要挑战是关系特征中复杂程度的多样性。如图1所示,实例之间通常混合了简单依赖和复杂依赖,它们都与集体分类任务相关。在这些网络中,一个简单的关系模型只能捕捉简单的关系,但在复杂的关系上会存在拟合不足。另一方面,传统的深层次学习模型可能只捕捉到复杂的关系,但在简单的关系上会过度拟合。因此,一个理想的模型应该能够自动平衡其模型复杂性与复杂性的混合。
  • 异构依赖性:将深度学习模型应用于集体分类的第三个主要挑战在于HINs中节点类型和链接类型的多样性。不同类型的节点(链路)的性质有很大的不同,这使得直接应用深度学习模型变得困难。例如,图卷积模型[6]假设网络中的每个节点共享相同的卷积核,这在HINs中是站不住脚的。尽管在HINs文献[16,37]中已有一些关于集体分类的研究,但大多是浅层模型,忽略了网络中的深层关系特征。

为了解决上述问题,我们提出了一种用于HINs集合分类的深图卷积模型GraphInception。图3比较了graphiception和其他常规方法之间的差异。考虑到关系特征复杂程度的多样性(有的很简单,有的很复杂),为了更有效地研究关系特征,我们提出了图起始模块来平衡不同复杂度的关系特征。这个模型的灵感来自于inception模块[35],这是一个用于CNN的高效深度卷积模型,参数较少,层次较深。

2准备工作

我们用大写字母表示矩阵,用粗体小写字母表示向量,用手写字母表示集合。运算符⊗用于表示卷积运算。我们总结了表1中的所有符号。

2.1异构信息网络

在许多实际应用中,网络包括多种类型的节点和链路,称为异构信息网络[34]。

定义1。异构信息网络是一种特殊的信息网络,它可以表示为有向图G=(V,E)  表示节点集,包括m类型:,…, ,其中v_{ij}表示第i个类型实例。E⊆V×V  表示 V中节点之间的链路,涉及多种链路类型。

例如,如图1所示,DBLP网络包括三种类型的节点,例如作者、论文、会议,它们通过两种类型的链接连接,例如authoredBy、PublishedIn。

2.2 HINs中的集体分类

本文主要研究一类节点上的集体分类问题,而不是在HIN中对它们进行分类。其原因是不同类型节点的标签空间相差很大,因此,假设所有类型的节点共享同一组标签概念是不合理的。例如,在电影网络中,例如IMDB[9],电影类型分类任务的标签概念仅在电影节点上定义,而不是导演节点或演员节点。在特定的推理任务中,我们通常只关心一种类型节点上的推理结果。

在不丧失一般性的前提下,我们假设HIN 𝐺中的第一个节点类型 是我们需要推断的目标节点类型,并且假设在 中有𝑛节点。在每个节点v_{1i}上,在𝑑维空间中有一个特征向量 ;还有一个标签变量 ,表示分配给节点v_{1i}的类标签。,, 表示中所有实例的特征集和标签集。

然后将中的实例划分为训练集L  和测试集𝒰,其中 。我们使用表示训练集中节点的标签集,使用表示测试集中节点的标签集。集体推理方法假设网络中链接的实例是相关的[30]。设表示与v_{1i}相关联的节点集,。HINs中的集体分类任务是估计:

学习和推断,尤其是学习HIN中具有复杂关联的节点的深层关系特征,是一项具有挑战性的工作。在下一节中,我们将提出一个解决问题的框架。

3.基于图卷积的深度关系特征学习

为了学习HINs中的深层关系特征,我们在这一节提出了基于图卷积的关系特征学习模型。该模型包括两个阶段:I)多通道网络转换,将HIN转换为多通道网络,以便我们可以在HIN中进行卷积;ii)基于图卷积的关系特征学习,基于图卷积从多通道网络中学习深层关系特征。我们的方法的架构如图5所示。

3.1多通道网络翻译

在一个HIN中有丰富的节点类型,而不同节点类型之间的差异很大,这大大增加了网络上卷积运算的难度。通常,我们只关心一种类型的节点,而不是HINs中的所有节点。为了简化学习曲线,我们提出了多通道网络,每个通道都是由目标节点类型组成的同构网络,并且从具有不同语义的HIN中提取链接(关系)。在这一小节中,我们首先引入一个名为元路径[34]的概念,它通常用于提取HINs中实例之间的关系。然后我们提出了如何将HIN转换为基于元路径的多通道网络。

HIN中的实例通过多种类型的链接相互连接。从节点类型到节点类型的每种类型的链接都对应于一个二进制关系R,其中如果节点v_{ip}v_{jq}在R中链接,则R(v_{ip},v_{jq})成立。例如,在图1中,链接类型“authoredBy”是论文节点和作者节点之间的关系,其中如果论文节点vip具有到网络中作者节点v_{jq}的“authoredBy”类型的链接,则R(v_{ip},v_{jq})成立。我们可以把链接类型写成“paperauthor”。元路径被定义为网络模式中的一系列关系。例如,元路径“” 表示作者节点之间的复合关系, 其中该元路径的语义是两个作者是共同作者。这里的链接类型“authoredBy^{-1}”代表“authoredBy”的反向关系。我们在图4中给出了作者节点之间的两种类型的元路径。

每个元路径定义了节点之间的唯一关系,并可用作多通道网络中特定通道的链接类型。为了更有效地学习实例之间的依赖关系,我们将HIN转换为多通道网络,其中网络的每个通道都通过某种类型的元路径连接。形式上,给定一组元路径,转换后的多通道网络G′定义为:

其中,表示中的实例之间的链接,这些实例通过元路径进行连接.

元路径的构建方式有很多:一开始,元路径是由专家手工构建的;随后,提出了几种构造元路径的有效方法,包括在有限路径长度内使用广度优先搜索[16]和基于贪婪树的模型[24]。在本文中,我们选择广度优先搜索来构建元路径。

3.2基于图形卷积的关系特征学习

         在这一小节中,我们首先提出了基于图卷积从同构网络中学习关系特征的思想,然后将这一思想扩展到HINs中。

在本研究中,我们主要关注关系特征学习,而传统的图形卷积模型主要关注内容特征学习[6,10,22]。我们总结了它们之间的显著差异,如表2和本小节最后一段所示。考虑齐次网络上的图形卷积,卷积定理将卷积定义为在傅里叶基中对角化的线性算子。我们用图转移概率矩阵P的特征向量作为傅里叶基。然后在上的卷积被定义为信号(每个节点的C维特征向量)与傅立叶域中P上的滤波器g_{\theta }的乘积,即

其中UP的特征向量矩阵,P的特征值的矩阵,是傅立叶系数的向量,的图傅立叶变换。注意,U是复矩阵,因为P是非对称矩阵。然而,最近的工作[8]已经成功地应用了传统CNN中的复值。而我们后面会看到,我们的模型与U是否为复矩阵无关。

为了选择给定节点的局部邻居,我们将g_{\theta }定义为多项式参数滤波器[6]:

其中参数是多项式系数的向量。然后我们有:

注意,这个表达式现在是K阶邻域,因为它是转移概率矩阵的第K阶多项式,即,它只依赖于距离目标节点最大K步的节点。

现在,我们扩展等式5至HINs。之前,我们介绍了如何将一个HIN G转换成一个多信道网络G’,其中网络的每个信道代表V1节点之间的一个特定关系。在这一小节中,我们通过G’的每个通道上的卷积来学习HIN上的关系特征,即,

其中表示.的转移概率矩阵注意,我们在不同的信道上使用不同的卷积滤波器,最后连接卷积结果。原因是节点在每个信道中具有不同的邻居节点,因此不适合用一个滤波器在所有信道上卷积。而且,我们推广了等式6到F的特征映射滤波器,即卷积滤波器的隐藏维数为F。那么我们有:

现在是滤波器参数的矩阵。向量x的函数 r 定义为r(x) = ,这里是Relu函数。H的第i行向量表示节点v_{1i}的学习的关系特征。

综上所述,传统图形卷积模型与我们的模型的区别包括以下几个方面:1)传统模型集中于图形分类问题,而我们的模型集中于集体分类问题;2)大多数图形卷积模型是内容特征学习模型,因此,它们使用拉普拉斯矩阵L的特征向量作为傅立叶基础。而我们的模型是一个关系特征学习模型,所以我们用转移概率矩阵P的特征向量作为傅立叶基;3)由于我们的目标是学习关系特征,所以我们的卷积滤波器不需要节点本身的属性,即不需要考虑等式5中k = 0的情况;4)我们模型的卷积输出是关系特征,大多数常规模型是内容特征;5)我们的模型可以处理HINs,而传统的图形卷积模型不能处理HINs。

4.基于图形初始模块的深度关系特征学习

为了平衡关系特征的复杂程度,我们提出了图形初始模块,以自动生成从简单到复杂的关系特征层次结构。

传统的初始模块只能处理欧几里德网格数据,例如图像数据[35],而不能用于一般的图结构,例如网络数据。因此,为了更有效地学习网络中的关系特征,我们提出了图初始模块。如图6(a)所示,图形初始模块结合不同大小的卷积核提取关系特征,并通过堆叠这些网络层生成从简单到复杂的关系特征层次。我们还在图6(b)中给出了一个玩具示例,它在DBLP网络中生成了作者之间的关系,从简单到复杂。例如,我们为每一层的每个信道取两个卷积核,并将核大小分别设置为1和2。那么第t层中的图形初始模块被定义为:

这里是大小为1/2的卷积核,通过组合它们来构造神经网络的第t层。而. σ(·)是用于降维的1 × 1卷积滤波器,且 .当t为0时,,否则 .为了减少参数个数,我们替换为:

我们可以通过堆叠多个图形初始层来提取复杂的关系特征,并通过调整层数来控制学习到的关系特征的复杂性。

与等式7相比,基于图初始模块的方法有三个优点:1)当K是一个大数字时,它可以显著减少所需的存储空间(等式7需要存储K个矩阵,而等式8只需要存储P);2)需要的参数比等式7少,当网络很深的时候;3)可以增强模型提取关系特征的能力。我们直观地期望这样一个模型能够缓解具有非常宽的节点度分布的图的局部邻域结构上的过拟合问题,例如社交网络、引用网络等。

假设图初始模块有t层,那么卷积运算的复杂度为O(|S|·C·F·T·|ℰ|),这里|S|是元路径的个数,C是输入信号的维数,F是卷积滤波器的隐藏维数。由于可以有效地实现为稀疏矩阵与稠密矩阵的乘积,并且|S|,C,F,T≪|ℰ|,复杂度在图的边数上是线性的。

5建议的解决方案

在学习了所有节点的关系特征之后,我们通过一个具有关系特征和局部特征的软最大值层来预测标,即,

其中a和 是权重矩阵和是偏差。T是等式8的顶层,c∈{1,...,C}表示节点的标签。这里的vec(·)是一个将输入矩阵缩放成向量的函数。我们使用所有节点的标签作为等式8的输入信号X,并使用0来初始化测试(未知)节点的标签。我们只使用标签而不同时使用标签和局部特征作为输入信号X的原因有两个:1)可以显著减少参数数量;2)传统的集体分类方法证实了目标节点的标签和相邻节点的局部特征之间只有很小的关联。

受迭代分类方法[30]成功的启发,我们提出了一种称为图形选择的算法来解决HINs中的集体分类问题。图形选项的框架如图7所示。该算法包括以下步骤:

多通道网络构造:给定一个HIN G,我们首先在最大路径长度pmax内提取一个元路径集。然后利用元路径集构造多通道网络G′

训练模型:在训练步骤中,我们使用本地特征和从等式8中学习的相关特征,通过将每个实例x_{i}转换成,来构造扩展训练集。然后,我们在基于等式10的扩展训练集上训练神经网络

迭代推理:在推理步骤中,我们基于最新的预测结果迭代更新相邻节点的标签值,然后使用这些新标签进行预测。当满足收敛标准时,迭代过程终止。最后,我们将为测试实例获取

我们提出的图形选项模型不仅可以应用于独立分量分析ICA框架,还可以通过用等式8替换传统的关系特征,轻松地扩展到其他集合分类框架,包括堆栈学习和标签传播。

6相关工作

本文位于两个发达领域的交叉点:集体分类和深度学习模型。我们简要概述了这两个领域的相关工作。

关系数据的集合分类[1,11,20,27,30],已经被许多研究者研究过了。基本的集体分类问题主要集中在同构网络上[21,23]。冀[12]研究了HINs上的一个专门分类问题,其中不同类型的节点共享一组相同的标签概念。孔等[15,16,37]提出了基于元路径的方法来解决HINs中一类节点的集合分类问题。寇[17]提出了一种基于堆叠模型的方法来解决集体分类问题。Choetkiertikul [4]将堆叠模型扩展为多关系网络,可以认为是本文提出的多通道网络之一。但是,以上都是浅薄的模型。Nandanwar [26]提出了一个基于深度随机游走的集体分类模型,但它关注的是同构网络。在这项工作中,我们选择了[4,16,30]中三个有代表性的算法作为竞争算法。

另一方面,在深度学习模型中,最近有许多关于图卷积的相关工作[6,7,10,28,31]。在图上定义卷积滤波器有两种策略:一种是空间方法,另一种是谱方法。通过构造,空间方法通过内核的有限大小提供过滤器定位。然而,正如在[6]中指出的,尽管可以想象在空间域中直接进行图形卷积,但是它也面临着匹配局部邻域的挑战。另一方面,卷积定理将卷积定义为在傅立叶基础上对角化的线性算子(通常由拉普拉斯算子的特征向量表示),这在图上提供了定义明确的平移算子。然而,很难在谱域中表示局部邻域。最近的工作[6,7]尝试了一些局部滤波器来克服这个问题,这启发了我们的算法。也有其他深度模型应用于集体分类问题。王[36]提出了一种深度网络嵌入方法,可用于解决网络分类问题。Kipf [14]提出了一种基于图卷积的半监督分类方法,而Moore [25]提出了一种基于RNN模型的半监督分类方法。然而,它们都集中在同构网络上。Chang [2]提出了一种用于异构网络嵌入的深度体系结构,该体系结构可用于HINs中的节点分类。Pham [29]提出了一种基于堆叠模型[17]和公路网[33]的多关系网络集体分类方法。在这项工作中,我们还选择了[14,29,33]中三个有代表性的算法作为竞争算法。

7实验

7.1数据收集

为了验证集体分类性能,我们将我们的算法应用于四个真实世界的HINs。请注意,IMDB数据集是一个多标签数据集,其余是多类数据集。(总结在表3中)。

  • DBLP数据集:第一个数据集,即DBLP四区[13],是从DBLP1中提取的书目信息网络,涉及三种类型的节点:会议、论文和作者,通过两种类型的关系/链接连接:authoredBy链接和publishedIn链接。我们将作者作为目标实例,作者的研究领域作为实例标签。我们还提取了作者发表的所有论文标题的词包表示作为本地特征,包括209个词(术语)。关于DBLP数据集的详细描述,请参考[13],网络模式如图8(a)所示。
  • IMDB数据集:第二个数据集是电影数据集2,它包含四种类型的节点:电影、导演、演员和女演员,由两种关系/链接连接:定向链接和男演员/女演员凝视链接。目标实例类型是电影实例,它分配有一组类别标签,指示电影的流派。对于每部电影,我们还提取一个关于电影的所有情节摘要的词包向量作为局部特征,包括1000个词。IMDB数据集的网络模式如图8(b)所示。关于IMDB数据集的详细描述,请参考[29]。
  • •SLAP数据集:第三个数据集是生物信息学数据集SLAP [3]。如图8(c)所示,SLAP数据集包含与化合物、基因、疾病、组织、途径等相关的综合数据。我们将基因视为我们的目标实例。每个基因可以属于一个基因家族。我们提取了15个最常见的基因家族作为实例标签,并提取了3000个基因本体术语作为每个基因实例的特征。关于SLAP数据集的详细描述,请参考[16]。
  • •ACM会议数据集:最后一个数据集也是书目信息网络,ACM会议数据集3,网络模式如图8(d)所示。该网络包括196个会议记录(例如,KDD'10,KDD'09等。),12.5K论文,17K作者。在每个论文节点上,我们提取论文标题和摘要的词包表示作为局部特征,包括300个词。网络中的每个论文节点都被分配了一个类别标签,表示论文的ACM索引项,包括11个类别。关于ACM会议数据集的详细描述,请参考[16]。

7.2比较算法

为了证明我们方法的有效性,我们比较了以下最先进的算法(总结在表4中):

  • 逻辑回归(简称LR):基线算法。
  • 公路网[33]:一种神经网络,使用门控机制来控制通过层的信息流。堆叠多个公路层允许训练深层网络。我们共享每一层的参数。
  • 独立分量分析[30]:同构网络中的基本集合分类方法。
  • HCC [16]:这是一种集体分类方法,通过利用基于网络中多个元路径的依赖关系,在HIN上工作。
  • 堆叠学习[4]:这是集体分类的多步骤学习程序。在每一步中,邻居节点的预测标签和目标节点的局部特征被输入标准分类器进行预测。
  • 列网络(简称CLN)[29]:这是一个深度前馈网络,用于多关系领域的集体分类,每层都有共享参数。它还将公路层实现到模型中。
  • GCN [14]:这是一种基于图形卷积的半监督分类算法。该模型提取每个卷积层中每个节点的一维局部信息,并通过堆叠的多个卷积层提取更深层次的关系特征。然而,它侧重于同构网络。
  • GCN(元路径):为了更公平地与GCN方法进行比较,我们将GCN方法扩展到具有元路径的HINs,如第3.1节所述。
  • 绘图选项:这是我们在第5节中提出的方法。

实际上,我们利用Keras来实现所有算法的高效的基于图形处理器的实现。为了公平比较,我们使用学习率为0.01的RMSprop为1500个时期(训练迭代)训练所有模型。所有的神经网络都在隐藏层使用ReLU。最大推理迭代M AXItis 10,我们还搜索基于堆叠的方法(CLN,堆叠学习,公路网)的堆叠层数:5,10,15,20。元路径长度pmaxis 4的最大值。卷积滤波器的隐藏维数是标签类型数的4倍,即F = 4 * C。每个初始模块有两个卷积滤波器,核大小分别为1和2。对于超参数调整,我们搜索初始层数T: 1,2,3,4。在所有实验中使用5倍交叉验证,结果通过10次运行的平均结果来报告。我们模型的代码可以在Github上找到。

7.3多类分类性能

在我们的第一个实验中,我们评估了所提出的图形选择方法在三个多类分类问题上的有效性:预测DBLP网络中作者的研究领域,预测SLAP网络中基因的基因家族,以及预测ACM会议网络中论文的ACM指数。评估指标包括准确性和F1分数。结果见表5。还列出了每个模型在每个评估标准上的性能等级。

在DBLP数据集上,图形选项最适合4个初始层。在SLAP数据集上,GraphInception最适合1个初始层。在ACM会议数据集上,图形选项最适合4个初始层。表5中的第一个观察结果是:几乎所有模型都比基线逻辑回归具有更好的性能,这表明深度学习模型和集体分类模型都可以提高分类性能。我们还发现,HCC,堆叠学习明显优于公路网和独立分量分析方法。这些结果支持实例之间的异构依赖可以提高分类性能。虽然CLN和GCN方法可以捕捉到以局部特征作为输入的网络中的深层关系特征,但它们在某些数据集上表现不佳。一个可能的原因是,节点标签与相邻节点的标签更密切相关,而不是相邻节点的特征。与上述所有算法相比,图形选项在多类分类任务中性能最好。

7.4多标签分类性能

在我们的第二个实验中,我们评估了所提出的图形选择方法在多标签分类问题上的有效性:在IMDB网络中预测电影的电影流派。评价指标包括:汉明损失、微观F1评分和子集0/1损失。结果见表6。还列出了每个模型在每个评估标准上的性能等级。

在IMDB数据集上,图形选项最适合1个初始层。我们在表6中的第一个观察结果是,大多数集合分类方法比不考虑实例之间相关性的方法(即LR和公路网)具有更好的性能。我们还发现,HCC,堆叠学习和GCN(元路径)明显优于GCN和独立分量分析方法。这些结果支持实例之间的异构依赖可以提高分类性能。总体而言,在多标签分类任务中,图形选项在所有指标上都具有最佳性能。

7.5关系特征可视化

为了更好地理解我们模型的学习过的关系特征,我们使用𝑡−𝑆𝑁𝐸[18]来可视化等式8的隐藏层激活,并在DBLP数据集上进行训练。我们还将可视化结果与其他深度学习模型进行了比较,包括:公路网、堆叠学习和CLN。结果如图9所示,颜色表示作者的研究领域类别。我们可以发现我们的图形选项模型可以有效地将相同类型的节点聚集在一起(相同的颜色)。结果显示,所提出的式8在学习深层关系特征上是有效的。我们不能与GCN相比,它在隐藏层中同时利用了局部特征和邻居节点标签,而其他模型(包括我们的模型)只在隐藏层中使用邻居节点标签,这对其他模型是不公平的。

7.6参数敏感性图形

选项中存在两个基本的超参数:卷积核大小K和卷积滤波器的隐藏维数F。为了测试图形选项方法性能的稳定性,我们在DBLP和IMDB数据集上测试了不同的KF值。其他两个数据集也有类似的趋势,但由于空间限制,无法显示。结果如图10和图11所示。在图10中,我们可以发现它对DBLP数据集和IMDB数据集的内核大小都不敏感。在图11中,我们可以发现更多的隐藏过滤器可以在DBLP数据集和IMDB数据集上获得更好的性能。

8结论

在本文中,我们提出了一个基于图卷积的模型来学习HINs中的深层关系特征,该模型主要关注集体分类问题。我们进一步提出了图形初始模块来混合实例之间复杂和简单的依赖关系。对现实世界任务的实证研究证明了所提出的图形选择算法在学习HINs中深层关系特征方面的有效性。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值