计算机视觉 | 面试题:04、NMS详细工作机制及代码实现

本文介绍了非极大值抑制(NMS)在目标检测中的作用,详细阐述了NMS的工作原理,并提供了相关代码实现的背景知识。通过NMS,可以有效地去除类别内的高IOU重复检测框,提升检测结果的质量。
摘要由CSDN通过智能技术生成

问题

看到一句话:NMS都不懂,还做什么Detection ! 虎躯一震……懂是大概懂,但代码能写出来吗???

在目标检测网络中,产生 proposal 后使用分类分支给出每个框的每类置信度,使用回归分支修正框的位置,最终会使用 NMS 方法去除同个类别当中 IOU 重叠度较高且 scores 即置信度较低的那些检测框。

下图就是在目标检测中 NMS 的使用效果:emmm大概就是能让你更无遮挡地看到美女的脸吧hhhh

在这里插入图片描述

背景知识

NMS (Non-maximum suppression) 非极大值抑制,即抑制不是极大值的检测框,根据什么去抑制?在目标检测领域,当然是根据 IOU (Intersection over Union) 去抑制。下图是绿色检测框与红色检测框的 IOU 计算方法:

img

N

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值