问题
看到一句话:NMS都不懂,还做什么Detection ! 虎躯一震……懂是大概懂,但代码能写出来吗???
在目标检测网络中,产生 proposal 后使用分类分支给出每个框的每类置信度,使用回归分支修正框的位置,最终会使用 NMS 方法去除同个类别当中 IOU 重叠度较高且 scores 即置信度较低的那些检测框。
下图就是在目标检测中 NMS 的使用效果:emmm大概就是能让你更无遮挡地看到美女的脸吧hhhh

背景知识
NMS (Non-maximum suppression) 非极大值抑制,即抑制不是极大值的检测框,根据什么去抑制?在目标检测领域,当然是根据 IOU (Intersection over Union) 去抑制。下图是绿色检测框与红色检测框的 IOU 计算方法:

本文介绍了非极大值抑制(NMS)在目标检测中的作用,详细阐述了NMS的工作原理,并提供了相关代码实现的背景知识。通过NMS,可以有效地去除类别内的高IOU重复检测框,提升检测结果的质量。
订阅专栏 解锁全文
970

被折叠的 条评论
为什么被折叠?



