问题
今天整理整理FAST、BRIEF、ORB算法的原理。
FAST算法
一、FAST简介
FAST(features from accelerated segment test)是一种角点检测算法,可以用于提取特征点,后来也长用于目标跟踪等计算机视觉任务中。FAST角点检测算法最初由 Edward Rosten 和 Tom Drummond 提出,并于2006年正式发表。如名字所示,FAST算法最大的优势就是计算效率,相比于其他特征检测算法(例如SIFT、SUSAN、Harris和DOG等)更加快速。此外,通过应用机器学习方法,FAST可以在计算时间和资源等方面得到进一步的性能提升。由于快速高效的性能,FAST角点检测算法非常适合实时视频处理应用。
二、FAST算法原理
FAST角点检测算法主要考虑像素点邻域的圆形窗口上的16个像素。如下图所示,作者认为,以像素 p 为中心的周围圆环上的16个像素中,如果有连续 n 个像素点的灰度值都比 p 点的灰度值大或都小,则认为 p 是一个角点。
本文详细介绍了计算机视觉中常用的三种算法:FAST、BRIEF和ORB。FAST是一种快速角点检测算法,适用于实时任务;BRIEF是二进制特征描述子,用于特征匹配,具有高效性;ORB是FAST和BRIEF的结合,解决了旋转不变性问题。文章涵盖了这些算法的基本原理、优缺点和应用场景。
订阅专栏 解锁全文
2368

被折叠的 条评论
为什么被折叠?



