传统时间预测:Deep Uncertainty Quantification: A Machine Learning Approachfor Weather Forecasting

困难:

1.数字天气预测(NWP)有时会出现初始状态设置不当

主要提出:

1.提出了一种信息融合机制:学习历史数据,历史数据中包含来自nwp的先验知识

2.We cast the weather forecasting problem as an end-to-end deep learning problem and solve
it by proposing a novel negative log-likelihood error (NLE) loss function

("end-to-end deep learning"指的是使用深度学习模型来直接从原始输入数据端到端(end-to-end)地解决问题,而不需要手动设计特征或中间表示。这种方法可以将整个问题映射为一个端到端的学习任务,让深度学习模型自动学习数据的特征和表示,从而实现更加高效和准确的解决方案。

在 end-to-end deep learning 中,模型接收原始输入数据(如图像、文本、音频等),并直接输出最终的预测结果,而不需要人为地进行特征提取或中间步骤。这种方法通常需要更大规模的数据集和更复杂的模型来学习数据的复杂特征和模式,但同时也能够减少人工设计特征的工作量,提高系统的整体性能。)

优点:

1.实现了深度不确定性量化(DUQ):单值预测+不确定性量化

补充:

单值预测和不确定性量化并不一定是冲突的,实际上,在许多情况下,它们是可以同时实现的。在深度学习和统计建模中,我们通常希望模型能够给出单值的预测结果,同时也能够估计这个预测结果的不确定性,这对于提高模型的可靠性和解释性非常重要。

以下是一些常见的方法来同时实现单值预测和不确定性量化:

  1. 概率预测模型:使用概率模型(如贝叶斯神经网络、高斯过程等)来建模输出的分布,而不仅仅是给出单个预测值。通过这种方法,我们可以得到预测的均值(单值预测),同时也能够得到预测结果的方差或置信区间等信息(不确定性量化)。

  2. 深度学习中的不确定性估计:在深度学习模型中,可以通过使用不同的损失函数(如均方误差损失和KL散度损失)、集成学习(如dropout、贝叶斯神经网络集成)或者将不确定性作为额外的输出来估计模型的不确定性。这样可以在进行单值预测的同时获得不确定性的估计

方法:

前提:有来自一定数量的气象站的历史气象观测和来自NWP的初步天气预报

时间设置:For feasible comparison, it focuses on a set time period, i.e., from 3:00 intraday to 15:00 (UTC) ofthe next day, henceTD = 37. 

预测元素:The target variables include temperature at 2 meters (t2m), relative humidity at 2 meters (rh2m) and wind at 10 meters (w10m), hence N3=3

输入:

信息融合机制:

单纯从历史数据中提取季节特征方法可能没办法提供最佳结果,因为天气变化太大(有噪声)

所以,我们提出了下列的数据融合机制: 

Model

采用的是seq2seq架构,也被称为Encoder-Decoder

Encoder:捕获当前气象动态,然后生成Decoder的初始状态

Decoder: 

依据编码器传来的初始状态+D+NWP

省去中间过程,端到端表示:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值