poj3273 Monthly Expense 二分查找

题目链接

题意:给出n组数据,每组有一个数,有多种方法通过将连续的几组数据并为一组使得组数从n减少至k,每组数据的值为其组中数据之和,每种方法得到的k组数据都有最大的一组数据和m,求这些方法中最小的m

解法:二分查找

以n组中最小的数为左边界l,n组数据之和为右边界r进行二分查找,取中间值mid=(l+r)/2,mid即为k组数据中最大的一组数据和,若mid可将n组数据分成多于k组数据,则mid偏小取右间,

若可将n组数据分成小于k组数据,则mid偏小取左区间,若恰好可分成k组数据,因要取最小的mid所以继续取左区间直都l=r;

#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
ll n,m,a[100005];
ll r,l,mid;
bool judge(ll d){
    ll t=0,sum=a[0];
    for(int i=1;i<n;i++){
     if(sum>d) return 1;
     sum+=a[i];
     if(sum>d){
        sum=a[i];
        t++;
     }
    }
    if(sum) t++;
    return t>m;
}
int bfind(){
while(l<r){
    mid=(l+r)/2;
    if(judge(mid)) l=mid+1;
    else  r=mid;
}
return l;
}
int main(){
    while(cin>>n>>m){
    r=0,l=1<<30;
    for(int i=0;i<n;i++){
    scanf("%d",&a[i]);
    r+=a[i];
    l=min(l,a[i]);
    }
    cout<<bfind()<<endl;
    }
return 0;
}

  

转载于:https://www.cnblogs.com/WELOTX/p/11376617.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值