高等近世代数笔记(1) 置换与群

版权声明:希望大家转载的时候把公式转载好一点QAQ,我就公式打得很辛苦了... https://blog.csdn.net/Myriad_Dreamin/article/details/81122825

(Definition)αSn,α=i=1tβi(βiSn):sgn(α)=(1)nt.

(Theorem)α,βSn,sgn(αβ)=sgn(α)sgn(β).

(Theorem)α,iff.sgn(α)=1,α.

(Proposition 2.2)αSn,sgn(α1)=sgn(α)
证明:由完全轮换分解定理α1=(i=1tβi)1=i=t1βi1(βiSn),所以sgn(α1)=(1)nt=sgn(α)

(Proposition 2.3)σSn,σSn1: σ(i)=σ(i)σi[1,n],sgn(σ)=sgn(σ).
证明:不妨设σ=αβ,α为所有不固定的轮换之积.则sgn(σ)=sgn(αβ)=(1)na1b=(1)na1b=sgn(σ).

(Proposition 2.5)
(i)αr,αr=(1);(ii)(i)r.
证明:
(i)α=(i0ir1):
basic step:α1(ik¯)=ik+1¯(modr).
recuisive step:αn(ik¯)=ik+n¯(modr).
所以αr(ik)=ik,αr=(1).
(ii)k<r,s.t.αk=(1),意味着存在更小的轮换分解,这时候α不是r-轮换.

(definition)(G,):()
(i)x,y,zG,x(yz)=(xy)z;(ii)eG,gG,eg=g=ge;(iii)gG,g1G,s.t.gg1=g1g=e.

(Theorem)G,G:
(i);(ii);(iii)gG;(iv)广;(v)(k=1ngk)1=k=n1gk1;

乘法群是典型群,加法群的是典型的abel群(交换群).

(Proposition 2.21)G,g2=ggG1.
证明:设gG满足,则g=g2g1=gg1=1.而幺元唯一.

(Proposition 2.22),(G,)
(i)gG,eg=g;(ii)gG,g1G,s.t.gg1=e.
.
证明:略.
(Proposition 2.23)p,gG,o(g)=m,m=pt,o(gt)=p.
证明:ym=ypt=1,若o(yt)=p<p,则ypt=1,且m>pt,于是o(yt)=p.

(Proposition 2.25)A,BGL(2,Q),A=[0110],B=[0111],o(A),o(B)o(AB).
证明:A2=I,B3=I,故o(A)=4,o(B)=6.
basic step:(AB)=[1101].
recuisive step:(AB)k=[1k01].
o(AB)=.
(Proposition 2.26)gG(o(g)=2),(G,)abel.
证明:(ab)(ba)=a2=e,(ab)(ba)2=abe=ab=eba=ba.

(Proposition 2.27)|G|0(mod2),|{gG|o(g)=2}|1(mod2).
证明:设G={g0=e,g1,g2,,gn1},显然若有k对gxgf(x)=e,则由若f(x)xo(gx)=o(gf(x))>2,及f(0)=0,o(e)=1
|{gG|o(g)=2}||G||{gG|o(g)>2}||{gG|o(g)=1}|11(mod2)

(Theorem)HG(Hx,yH(xy1H))HGH.

(Theorem)G|gen(G)|=φ(|G|),γgen(G)(|γ|,|G|)=1.

(Theorem)G,H(G)=H|HG,HxH(G)HxH(G) ,H,KH(G),HKH(G).

(Theorem)G,XG,X⊂⩽HG. ,X=,<>=e(e,xX).

(Theorem)G,aH(G)={aH|aiHajH=},G=axHaH(G)axH.

(Lagrange's Theorem)G,|G|=[G:H]|H||H|||G|.

(definition)Zm=Z/mZ,U(Zm)={x¯Zm|(x,m)=1}.

(Theorem)U(Zm)φ(m)=|U(Zm)|.

(Euler's Theorem)aφ(m)1(modm)
(Fermat's Theorem),p,apa(modp).

抽象代数角度的证明:
aU(Zm),a|U(Zm)|1,a|φ(m)|1(modm);
aU(Zm),a0,ap0p=0(modm),(a,m)1.

(Willson's Theorem)p,(p1)!p11(modp).
抽象代数角度的证明:
因为1p1U(Zp),且I:U(Zp)U(Zp),a1=I(a)是双射,所以(p1)!1(p1)/2p(1)p1(modp).
,m,a,b,s.t.m=ab(ab),(p1)!ab(p1)!abxm0.
a=b(a21)!{2,a=2am2am(a21)!2a20,a>2
(Proposition 2.29)HG,
(i)Ha=Hbab1H;(ii)ab:ab1Ha¯=Ha.
证明:
(i)a=hb,h,b1H,ab1=hH.
(ii)ab1=hH,hHa¯=Hb,(i)Ha=Hb,a¯=Ha.
(Proposition 2.32)KHG,[G:K]=[G:H][H:K]
证明:由lagrange定理,[G:K]=|G|/|K|,[G:H]=|G|/|H|,[H:K]=|H|/|K|.
[G:K][G:H][H:K]=|G|/|K||G|/|H||H|/|K|=1
(Proposition 2.33)K,HG,(|H|,|K|)=1,HK={e}.
证明:由交子群定理,HKH,KG,lagrange|HK|||H|,|G|.
所以对xHK,x|HK|=ex|H|=x|G|=e,Bezout,xu|H|+v|G|=eu+v=x=e,这就得到了HK=e.

阅读更多
换一批

没有更多推荐了,返回首页