# 高等近世代数笔记(1) 置换与群

$\text{(Definition)}设\alpha \in {S}_{n},且\alpha =\prod _{i=1}^{t}{\beta }_{i}\left({\beta }_{i}\in {S}_{n}\right)是分解为不相交轮换的完全轮换分解:\phantom{\rule{0ex}{0ex}}定义sgn\left(\alpha \right)=\left(-1{\right)}^{n-t}.\phantom{\rule{0ex}{0ex}}$$\displaystyle\text{(Definition)}设\alpha \in S_n,且\alpha=\prod_{i=1}^{t}\beta_i(\beta_i\in S_n)是分解为不相交轮换的完全轮换分解:\\定义sgn(\alpha)=(-1)^{n-t}.\\$

$\text{(Theorem)}\mathrm{\forall }\alpha ,\beta \in {S}_{n},sgn\left(\alpha \beta \right)=sgn\left(\alpha \right)sgn\left(\beta \right).$$\displaystyle\text{(Theorem)}\forall \alpha,\beta\in S_n,sgn(\alpha\beta)=sgn(\alpha)sgn(\beta).$

$\text{(Theorem)}\alpha 是偶置换,iff.sgn\left(\alpha \right)=1,否则\alpha 是奇置换.$$\displaystyle\text{(Theorem)}\alpha是偶置换,iff.sgn(\alpha)=1,否则\alpha是奇置换.$

$\text{(Proposition 2.2)}\alpha \in {S}_{n},则sgn\left({\alpha }^{-1}\right)=sgn\left(\alpha \right)$$\displaystyle\text{(Proposition 2.2)}\alpha\in S_n,则sgn(\alpha^{-1})=sgn(\alpha)$

$\displaystyle\text{(Proposition 2.3)}\sigma\in S_n,定义\sigma’\in S_{n-1}:\ \sigma’(i)=\sigma(i)对于一切\sigma所不固定的i\in [1,n],证明sgn(\sigma’)=sgn(\sigma).$

$\text{(Proposition 2.5)}$$\displaystyle\text{(Proposition 2.5)}$
$\begin{array}{rl}\left(i\right)& \alpha 是r-轮换,证明{\alpha }^{r}=\left(1\right);\\ \left(ii\right)& 证明\left(i\right)中r是满足的最小正整数.\end{array}$\begin{aligned}(i)&\alpha是r-轮换,证明\alpha^r=\left(1\right);\\ (ii)&证明(i)中r是满足的最小正整数.\end{aligned}

$\left(i\right)$$(i)$$\alpha =\left({i}_{0}\dots {i}_{r-1}\right):$$\alpha=(i_0\dots i_{r-1}):$
$\text{basic step:}{\alpha }^{1}\left({i}_{\overline{k}}\right)={i}_{\overline{k+1}}\phantom{\rule{0.444em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}r\right).$$\text{basic step:}\alpha^{1}(i_\overline{k})=i_{\overline{k+1}}\pmod r.$
$\text{recuisive step:}{\alpha }^{n}\left({i}_{\overline{k}}\right)={i}_{\overline{k+n}}\phantom{\rule{0.444em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}r\right).$$\text{recuisive step:}\alpha^{n}(i_\overline{k})=i_{\overline{k+n}}\pmod r.$

$\left(ii\right)$$(ii)$$\mathrm{\exists }k$\exists k,意味着存在更小的轮换分解,这时候$\alpha$$\alpha$不是r-轮换.

$\text{(definition)}群\left(G,\ast \right)满足:\left(\ast 省略\right)$$\displaystyle\text{(definition)}群(G,*)满足:(*省略)$
$\begin{array}{rl}\left(i\right)& \mathrm{\forall }x,y,z\in G,x\left(yz\right)=\left(xy\right)z;\\ \left(ii\right)& \mathrm{\exists }e\in G,对\mathrm{\forall }g\in G,eg=g=ge;\\ \left(iii\right)& \mathrm{\forall }g\in G,\mathrm{\exists }{g}^{-1}\in G,s.t.g{g}^{-1}={g}^{-1}g=e.\end{array}$\begin{aligned}(i)&\forall x,y,z\in G,x(yz)=(xy)z;\\(ii)&\exists e\in G,对\forall g\in G,eg=g=ge;\\(iii)&\forall g\in G,\exists g^{-1}\in G,s.t.gg^{-1}=g^{-1}g=e.\end{aligned}

$\text{(Theorem)}若G是群,则G有以下定律成立:$$\displaystyle\text{(Theorem)}若G是群,则G有以下定律成立:$
$\begin{array}{rl}\left(i\right)& 消去律成立;\\ \left(ii\right)& 幺元唯一;\\ \left(iii\right)& \mathrm{\forall }g\in G逆元唯一;\\ \left(iv\right)& 广义结合律成立;\\ \left(v\right)& \left(\prod _{k=1}^{n}{g}_{k}{\right)}^{-1}=\prod _{k=n}^{1}{g}_{k}^{-1};\end{array}$\begin{aligned}(i)&消去律成立;\\(ii)&幺元唯一;\\(iii)&\forall g\in G逆元唯一;\\(iv)&广义结合律成立;\\(v)&(\prod_{k=1}^{n} g_{k})^{-1}=\prod_{k=n}^{1} g_{k}^{-1};\end{aligned}

$\text{(Proposition 2.21)}若G是群,则满足{g}^{2}=g的唯一元素g\in G是1.$$\displaystyle\text{(Proposition 2.21)}若G是群,则满足g^2=g的唯一元素g\in G是1.$

$\text{(Proposition 2.22)}证明,若\left(G,\ast \right)满足：$$\displaystyle\text{(Proposition 2.22)}证明,若(G,*)满足：$
$\begin{array}{rl}\left(i\right)& \mathrm{\forall }g\in G,eg=g;\\ \left(ii\right)& \mathrm{\forall }g\in G,\mathrm{\exists }{g}^{-1}\in G,s.t.g{g}^{-1}=e.\end{array}\phantom{\rule{0ex}{0ex}}$\begin{aligned}(i)&\forall g\in G,eg=g;\\ (ii)&\forall g\in G,\exists g^{-1}\in G,s.t.gg^{-1}=e.\end{aligned}\\
$该定义与群的定义等价.$$该定义与群的定义等价.$

$\text{(Proposition 2.23)}证明若p是素数,且g\in 群G,o\left(g\right)=m,有m=pt,则o\left({g}^{t}\right)=p.$$\displaystyle\text{(Proposition 2.23)}证明若p是素数,且g\in 群G,o(g)=m,有m=pt,则o(g^t)=p.$

$\text{(Proposition 2.25)}已知A,B\in GL\left(2,\mathcal{Q}\right),设A=\left[\begin{array}{cc}0& -1\\ 1& 0\end{array}\right],B=\left[\begin{array}{cc}0& 1\\ -1& 1\end{array}\right],求o\left(A\right),o\left(B\right)及o\left(AB\right).$$\displaystyle\text{(Proposition 2.25)}已知A,B\in GL(2,\mathcal{Q}),设A=\left[\begin{matrix} 0 &-1\\1&0\end{matrix}\right],B=\left[\begin{matrix}0 &1\\-1&1\end{matrix}\right],求o(A),o(B)及o(AB).$

$\text{basic step:}\left(AB\right)=\left[\begin{array}{cc}1& -1\\ 0& 1\end{array}\right]$$\text{basic step:}(AB)=\left[\begin{matrix}1 &-1\\0&1\end{matrix}\right]$.
$\text{recuisive step:}\left(AB{\right)}^{k}=\left[\begin{array}{cc}1& -k\\ 0& 1\end{array}\right]$$\text{recuisive step:}(AB)^k=\left[\begin{matrix}1 &-k\\0&1\end{matrix}\right]$.
$o\left(AB\right)=\mathrm{\infty }$$o(AB)=\infty$.
$\text{(Proposition 2.26)}证明若\mathrm{\forall }g\in G\left(o\left(g\right)=2\right),则群\left(G,\ast \right)是\text{abel}群.$$\displaystyle\text{(Proposition 2.26)}证明若\forall g\in G(o(g)=2),则群(G,*)是\text{abel}群.$

$\text{(Proposition 2.27)}证明若|G|\equiv 0\phantom{\rule{1em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}2\right),则|\left\{g\in G|o\left(g\right)=2\right\}|\equiv 1\phantom{\rule{1em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}2\right)$$\displaystyle\text{(Proposition 2.27)}证明若|G|\equiv 0\pmod 2,则|\{g\in G|o(g)=2\}|\equiv 1\pmod 2$.

$\begin{array}{rl}|\left\{g\in G|o\left(g\right)=2\right\}|\equiv & |G|-|\left\{g\in G|o\left(g\right)>2\right\}|-|\left\{g\in G|o\left(g\right)=1\right\}|\\ \equiv & -1\equiv 1\phantom{\rule{1em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}2\right)\end{array}$\begin{aligned}|\{g\in G|o(g)=2\}|\equiv&|G|-|\{g\in G|o(g)>2\}|-|\{g\in G|o(g)=1\}|\\\equiv&-1\equiv 1\pmod 2\end{aligned}

$\text{(Theorem)}H⩽G⇔\left(H\ne \varnothing \wedge \mathrm{\forall }x,y\in H\left(x{y}^{-1}\in H\right)\right)⇔\varnothing ⊊H\subset G且H封闭$$\displaystyle\text{(Theorem)}H\leqslant G\Leftrightarrow(H\neq \varnothing \wedge \forall x,y\in H(xy^{-1}\in H))\Leftrightarrow \varnothing \subsetneq H \subset G 且H封闭$.

$\text{(Theorem)}有限群G有|gen\left(G\right)|=\phi \left(|G|\right),意味着\mathrm{\forall }\gamma \in gen\left(G\right)⇔\left(|⟨\gamma ⟩|,|G|\right)=1$$\displaystyle\text{(Theorem)}有限群G有|gen(G)|=\varphi(|G|),意味着\forall \gamma\in gen(G)\Leftrightarrow(|\left<\gamma\right>|,|G|)=1$.

$\displaystyle\text{(Theorem)}G是群,\mathcal{H}(G)={H|H\leqslant G},则\bigcap_{H_x\in \mathcal{H}(G)}H_x\in\mathcal{H}(G)\ 特别地,若H,K\in \mathcal{H}(G),则H\cap K\in \mathcal{H}(G)$.

$\displaystyle\text{(Theorem)}G是群,如果X\subset G,则存在X\subset\leqslant \forall H\leqslant G.\ 特别地,若X=\varnothing,有<\varnothing>={e}(由群定义至少包含e,并非由任何x\in X生成).$

$\text{(Theorem)}G是群,a\mathcal{H}\left(G\right)=\left\{aH|{a}_{i}H\cap {a}_{j}H=\varnothing \right\},则G=\bigcup _{{a}_{x}H\in a\mathcal{H}\left(G\right)}{a}_{x}H$$\displaystyle\text{(Theorem)}G是群,a\mathcal{H}(G)=\{aH|a_iH\cap a_jH=\varnothing\},则G=\bigcup_{a_xH\in a\mathcal{H}(G)}a_xH$.

$\text{(Lagrange's Theorem)}G是群,则|G|=\left[G:H\right]|H|⇔|H|||G|$$\displaystyle\text{(Lagrange's Theorem)}G是群,则|G|=[G:H]|H|\Leftrightarrow |H|\big||G|$.

$\text{(definition)}{\mathcal{Z}}_{m}=\mathcal{Z}/m\mathcal{Z},U\left({\mathcal{Z}}_{m}\right)=\left\{\overline{x}\in {\mathcal{Z}}_{m}|\left(x,m\right)=1\right\}$$\displaystyle\text{(definition)}\mathcal{Z}_m=\mathcal{Z}/m\mathcal{Z},U(\mathcal{Z}_m)=\{\overline{x}\in \mathcal{Z}_m|(x,m)=1\}$.

$\text{(Theorem)}U\left({\mathcal{Z}}_{m}\right)是乘法群且由此定义\phi \left(m\right)=|U\left({\mathcal{Z}}_{m}\right)|$$\displaystyle\text{(Theorem)}U(\mathcal{Z}_m)是乘法群且由此定义\varphi(m)=|U(\mathcal{Z}_m)|$.

$\text{(Euler's Theorem)}{a}^{\phi \left(m\right)}\equiv 1\phantom{\rule{1em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}m\right)$$\displaystyle\text{(Euler's Theorem)}a^{\varphi(m)}\equiv 1\pmod m$
$\text{(Fermat's Theorem)}特别地,p是素数则,{a}^{p}\equiv a\phantom{\rule{1em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}p\right)$$\displaystyle\text{(Fermat's Theorem)}特别地,p是素数则,a^p\equiv a\pmod p$.

$①若a\in U\left({\mathcal{Z}}_{m}\right),则由{a}^{|U\left({\mathcal{Z}}_{m}\right)|}\equiv 1,得{a}^{|\phi \left(m\right)|}\equiv 1\phantom{\rule{1em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}m\right)$$\displaystyle①若a\in U(\mathcal{Z}_m),则由a^{|U(\mathcal{Z}_m)|}\equiv1,得a^{|\varphi(m)|}\equiv1\pmod m$;
$②若a\notin U\left({\mathcal{Z}}_{m}\right),则由a\equiv 0,得{a}^{p}\equiv {0}^{p}=0\phantom{\rule{1em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}m\right),此时\left(a,m\right)\ne 1$$\displaystyle②若a\notin U(\mathcal{Z}_m),则由a\equiv0,得a^p\equiv 0^p=0\pmod m,此时(a,m)\neq 1$.

$\text{(Willson's Theorem)}p是素数则,\left(p-1\right)!\equiv p-1\equiv -1\phantom{\rule{1em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.333em}{0ex}}p\right)$$\displaystyle\displaystyle\text{(Willson's Theorem)}p是素数则,(p-1)!\equiv p-1\equiv -1\pmod p$.

$另外,若m是合数,则\mathrm{\exists }a,b,s.t.m=ab\left(a\ne b\right),故\left(p-1\right)!\equiv ab\frac{\left(p-1\right)!}{ab}\equiv xm\equiv 0$$\displaystyle 另外,若m是合数,则\exists a,b,s.t. m=ab(a\neq b),故(p-1)!\equiv ab\frac{(p-1)!}{ab}\equiv xm\equiv 0$.
$或者a=b⇔\left({a}^{2}-1\right)!\equiv \left\{\begin{array}{rl}2& ,a=2\\ a{\cdot }_{m}2a{\cdot }_{m}\frac{\left({a}^{2}-1\right)!}{2{a}^{2}}\equiv 0& ,a>2\end{array}$\displaystyle 或者a=b\Leftrightarrow(a^2-1)!\equiv\left\{\begin{aligned}2 &,a=2\\a\cdot_m2a\cdot_m\frac{(a^2-1)!}{2a^2}\equiv0 &,a>2\end{aligned}\right.
$\text{(Proposition 2.29)}设H⩽G,证明：$$\displaystyle\text{(Proposition 2.29)}设H\leqslant G,证明：$
$\begin{array}{rl}\left(i\right)& Ha=Hb⇔a{b}^{-1}\in H;\\ \left(ii\right)& a\sim b:a{b}^{-1}\in H则\overline{a}=Ha.\end{array}$\begin{aligned}(i)&Ha=Hb\Leftrightarrow ab^{-1}\in H;\\(ii)&a\sim b:ab^{-1}\in H则\overline{a}=Ha.\end{aligned}

$\left(i\right)由陪集定义a=hb,且h,{b}^{-1}\in H,故a{b}^{-1}=h\in H$$(i)\displaystyle 由陪集定义a=hb,且h,b^{-1}\in H,故ab^{-1}=h\in H$.
$\left(ii\right)由a{b}^{-1}=h\in H,h取遍H这就得到\overline{a}=Hb,由\left(i\right)Ha=Hb,所以\overline{a}=Ha.$$(ii)\displaystyle由ab^{-1}=h\in H,h取遍H这就得到\overline{a}=Hb,由(i)Ha=Hb,所以\overline{a}=Ha.$
$\text{(Proposition 2.32)}设K⩽H⩽G,证明\left[G:K\right]=\left[G:H\right]\left[H:K\right]$$\displaystyle\text{(Proposition 2.32)}设K\leqslant H\leqslant G,证明[G:K]=[G:H][H:K]$

$\frac{\left[G:K\right]}{\left[G:H\right]\left[H:K\right]}=\frac{|G|/|K|}{|G|/|H|\cdot |H|/|K|}=1$$\displaystyle \frac{[G:K]}{[G:H][H:K]}=\frac{|G|/|K|}{|G|/|H|\cdot|H|/|K|}=1$
$\text{(Proposition 2.33)}设K,H⩽G,且\left(|H|,|K|\right)=1,证明H\cap K=\left\{e\right\}.$$\displaystyle\text{(Proposition 2.33)}设K,H\leqslant G,且(|H|,|K|)=1,证明H\cap K =\{e\}.$