图像相似性评估:SSIM、PSNR,MES, python代码实现

该文介绍了三种用于评估图像质量的指标:结构相似度指数(SSIM),峰值信噪比(PSNR)和均方误差(MSE)。通过scikit-image库进行计算,示例中展示了如何使用这些指标对经过cv2.resize处理后的图像进行比较。SSIM值越接近1表示图像越相似,PSNR越大表明失真越少,MSE值越小则图像越接近。
摘要由CSDN通过智能技术生成

SSIM : 值越接近1,说明图像越相似
PSNR:PSNR越大说明失真越少,生成图像的质量越好
MES:MSE值越小,说明图像越相似

环境安装:

pip install scikit-image
from skimage.metrics import structural_similarity as compare_ssim
from skimage.metrics import peak_signal_noise_ratio as compare_psnr
from skimage.metrics import mean_squared_error as compare_mse
import cv2
import os


def getSimi(img1,img2):
    print(img1.shape)
    print(img2.shape)
    # ssim = compare_ssim(img1, img2, multichannel=True)
    ssim = compare_ssim(img1, img2, channel_axis=-1)
    psnr = compare_psnr(img1, img2)
    mse = compare_mse(img1, img2)
    return ssim, psnr,mse

img1 = cv2.imread(img_path)
img1 = cv2.resize(img1, (512, 512), interpolation=cv2.INTER_AREA)  #resize images
ssim, psnr,mse = getSimi(img1,source_img)

需要注意的是,这些相似性评估指标的计算,要求图像具有相同的shape。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Summer tree

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>