认识Transformer:入门知识

视频链接:
https://www.youtube.com/watch?v=ugWDIIOHtPA&list=PLJV_el3uVTsOK_ZK5L0Iv_EQoL1JefRL4&index=60

Seq2Seq

RNN不容易被平行化
提出用CNN来代替RNN,CNN 可以平行化,但是需要的层数比较深,才能看完所有的输入内容。

Self-Attention layer

在这里插入图片描述
b1 到b4 是可以同时被算出。
可以用来取代RNN。

来源: Attention is all you need

在这里插入图片描述
然后用每一个a 去对每个k 做attention

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
加速的矩阵乘法过程
在这里插入图片描述

Multi-head self-attention

不同的head 可以关注不同的内容,达到一个更好的注意力效果。
在这里插入图片描述

Positional encoding

self-attention 没有考虑位置信息。
因此需要再ai的同时加ei,表示位置信息,有人工控制。

在这里插入图片描述

Seq2Seq with Attention

在这里插入图片描述

Transformer

在这里插入图片描述

在这里插入图片描述

Universal Transformer

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Summer tree

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>