- 博客(283)
- 资源 (5)
- 问答 (1)
- 收藏
- 关注
原创 【论文解析】Deep Generative Models on 3D Representations: A Survey
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and gene
2022-11-16 17:00:03
842
原创 Ubuntu20 开机输入密码循环登录进入不了桌面
方案3:https://blog.csdn.net/feiniao8651/article/details/60332535/方案1:https://blog.csdn.net/qq_16720391/article/details/86536748。方案2 :https://blog.csdn.net/db1600809/article/details/86595465。- 还是没有更新成功,也不能install python-ntdb。再次执行apt-get update。注意到有报错说空间不够,
2022-09-20 15:21:29
2531
原创 docker中解决ImportError: libcudart.so.11.0: cannot open shared object file: No such file or directory
参考链接:https://blog.csdn.net/weixin_42314494/article/details/114303223。大致的解决思路就是,哪儿缺啥,就把要用的东西拷贝到对应的地方去。具体的操作还是得根据自己的具体情况来进行调整。docker中,环境变量的位置在。每个遇到这个问题,就折腾很久,我们默认安装的cuda在。
2022-09-18 22:53:08
3271
原创 【论文解析】Seeing 3D objects in a Single Image via Self-supervised static-Dynamicdisentanglement 【1】
本文作者提出了一种基于自监督学习的3D场景表示学习方法,并将得到的3D表示分解为静态和动态的场景元素。虽然本文方法是在多视图数据集上进行训练,但是在测试阶段,模型可以从单个静态图像出发对整体场景进行三维重建。此外,作者结合神经平面图和本文推出的静态-动态分解机制,可以得到更加丰富的3D场景表示,其为很多下游以对象为中心的3D分析任务提供了一种数据高效的解决方案,例如3D实例分割、3D目标检测和3D场景编辑。
2022-09-07 17:13:27
923
原创 【深蓝学院】- Multiplane Images and Neural Rendering
multiplane images and neural rendering
2022-09-05 17:13:40
700
原创 【深蓝学院】基于NeRF的三维场景重建和理解(beyond Novel view synthesis NeRF+X)
基于NeRF的三维场景重建和理解(beyond Novel view synthesis NeRF+X)
2022-09-05 12:03:52
1645
原创 【深蓝学院】基于NeRF的三维内容生成 High-quality 3D Content Creation from Images
基于NeRF 的三维内容生成
2022-08-25 15:22:42
1037
原创 【NeRF】背景、改进、应用与发展
推荐阅读:Neural Fields in Visual Computing and Beyond[1]State of the art on neural rendering[2]NeRF Explosion 2020awesome-NeRF主要参考文献:https://zhuanlan.zhihu.com/p/512538748GIRAFFE[12]再次凭借隐式表示中的物体编辑和组合获得CVPR2021年的best paper 。1 背景3D场景表征可分别为:显式 (explic
2022-05-24 11:56:47
10182
6
原创 【运行测试】train_encoder vs train_encoder with use_image_loss
比较是否使用 image loss对编码器效果的影响。使用generator_encoder来进行测试对比的encoder为:1: /home/joselyn/workspace/0419-course/logs/StyleNeRF-main/train_encoder_1GPU/checkpoints/network-snapshot-000900.pkl2: /home/joselyn/workspace/0419-course/logs/StyleNeRF-main/train_encoder
2022-05-23 21:09:21
243
原创 【编码实现】train_mynet.py
Mynet实现运行命令:--g_ckpt=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/train_mynet/debug --data=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/dataset_create/Mydataset
2022-05-23 10:01:13
222
原创 【编码实现】dataset_create.py
基于generate.py实现。运行命令:python dataset_create.py --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/dataset_create/s5 --trunc=1 --seeds=5 --network=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --render-program="rotation_camera
2022-05-23 10:00:49
396
原创 【编码实现】结合encoder和projector对w进行优化(projector_encoder.py)
文章目录说明一下generator_encoder.py说明一下projector.pybaseline file = projector.py说明一下generator_encoder.py给定数据集,和seed,用预训练好的encoder提取w, 然后生成图像。运行命令如下: python generate_encoder.py --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main/generate_encoder_r
2022-05-18 10:50:41
372
原创 【源码解析】StyleNeRF 之Train_encoder.py
文章目录思考debug 参数 train_encoder.py --g_ckpt=/home/joselyn/workspace/0419-course/stylenerf_pkl/ffhq_256.pkl --outdir=/home/joselyn/workspace/0419-course/logs/StyleNeRF-main1/debug --data=/home/joselyn/workspace/0419-course/images256x256train_encoder.py line
2022-05-12 21:41:39
318
原创 【源码解析】StyleNeRF之 projector.py
文章目录正式测试debug了解projector文件说明:Project given image to the latent space of pretrained network pickle即将给定图像投影到预训练网络 的潜在空间options@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)@click.option('--target', 'target_fname
2022-05-12 11:06:59
941
2
原创 【运行测试】使用encoder来generate图像
尝试利用generate.py 和训练好的encoder,来恢复图像创建generate_encoder.py来做代码调整文章目录本地conda环境运行的命令project_name=StyleNeRF-main1workdir=/host/home/joselyn/workspace/0419-courseoutdir=$workdir/logs/$project_namenetwork=$workdir/stylenerf_pkl/ffhq_256.pkltestIma_dir=$w
2022-05-11 16:46:25
764
原创 【Docker镜像配置】python3.7+StyleNeRF-Requrements
文章目录在服务器拉取的镜像基础上配置新的环境从服务器上拉取镜像:在服务器拉取的镜像基础上安装python3.7给python3.7 加上pip尝试直接从docker python3.7的镜像出发开始配置基于服务器上的镜像再次安装python3.7在服务器拉取的镜像基础上配置新的环境从服务器上拉取镜像:docker pull 172.20.208.7/hpcl_images/standard:python_3.6-pytorch_1.4.0-gpu创建容器:docker run --name st
2022-05-11 08:21:56
1526
原创 Python Click 模块
参考链接 https://developer.aliyun.com/article/531283文章目录快速使用click.option可选值多值参数输入密码改变命令行程序的执行click.argument不定参数Click 是用 Python 写的一个第三方模块,用于快速创建命令行。快速使用Click使用的两个步骤:使用 @click.command() 装饰一个函数,使之成为命令行接口;使用 @click.option() 等装饰函数,为其添加命令行选项等。典型使用形式如下:impo
2022-05-06 09:27:00
2512
原创 【书籍】《PyTorch深度学习》——深度学习之计算机视觉
文章目录神经网络简介从零开始构建CNN模型卷积池化非线性激活ReLU视图 (view)训练模型狗猫分类问题利用迁移学习对狗猫分类创建和探索VGG16模型冻结层微调训练计算预卷积特征理解CNN模型如何学习CNN层的可视化权重神经网络简介构建图像分类器可分为以下步骤。获取数据创建验证数据集从零开始构建CNN模型训练和验证模型torchvision变换可以将数据转换成PyTorch张量并进行归一化。下面的代码负责下载数据、把数据封装成DataLoader以及数据的归一化处理:从零开始构建C
2022-05-05 15:47:45
737
原创 【书籍】《PyTorch深度学习》——机器学习项目的工作流
文章目录问题定义与数据集创建成功的衡量标准评估协议准备数据模型基线大到过拟合的模型应用正则化学习率的选择问题定义与数据集创建输入数据一旦识别出问题类型,就更容易确定应该使用什么样的架构、损失函数和优化器。数据中隐藏的模式有助于将输入映射到输出我们拥有的数据足以让模型进行学习重要假设:未来或未知的数据将接近历史数据所描述的模式成功的衡量标准对于平衡分类问题,其中所有的类别都具有相似的准确率,ROC和AUC是常见的度量。对于不平衡的数据集,可以使用查准率(precision)和查全率(rec
2022-05-05 10:51:40
210
原创 【书籍】《Pytorch深度学习》——实现第一个神经网络
文章目录准备数据为神经网络创建数据创建学习参数神经网络模型网络的实现损失函数优化神经网络加载数据Dataset类DataLoader类Pytorch 编码准备数据PyTorch提供了两种类型的数据抽象,称为张量和变量。张量张量类似于numpy中的数组,它们也可以在GPU上使用,并能够改善性能。张量类似Python数组,并可以改变大小PyTorch的大多数张量运算都和NumPy运算非常类似。4维张量类型的一个常见例子是批图像。为了可以更快地在多样例上执行相同的操作,现代的CPU和GPU都进
2022-05-05 09:34:29
1043
1
原创 【论文解析】StyleNeRF内容回顾+附录解读
StyleNeRF内容回顾+附录解读StyleNeRF内容回顾附录解读ETHICS STATEMENTStyleNeRF内容回顾框架结合了NeRF和StyleGAN。仅使用volume rendering 来产生低分辨率的特征映射,再在此基础上通过上采样回复高分辨率。效果: StyleNerf可以快速和合成高分辨率图像,并且保留3D一致性,可以控制相机poses 和不同层级的风格。它还支持具有挑战性的任务,包括放大和缩小、样式混合、反转和语义编辑。附录解读ETHICS STATEMENT
2022-05-04 16:57:34
3177
原创 【论文解析】FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category
FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category内容速览方法Setup2 Preliminaries3 目标和背景分割4 Objects as Deformed Template NeRFs5 损失函数结果内容速览我们研究了使用神经辐射场(NeRF)从输入图像集合中学习高质量的3D对象类别模型。我们可以同时将前景对象从不同的背景中分离出来。FiG-NeRF一个2组分NeRF模型。将场景解释为一个几何.
2022-04-27 21:58:08
1068
原创 【论文解析】RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from Sparse Inputs
文章目录内容速览具体方法1 背景2. Patch-based Regularization3. Sample Space Annealing结果内容速览问题: 当可用视角图像数量减少的时候,NeRF效果不好。发现: 在稀疏输入场景中,大多数artifats是由估计场景几何形状中的错误和训练开始时的发散行为造成的。RegNeRF一种正则化稀疏输入场景的NeRF模型的新方法。正则化从未观察到的视点渲染的patches的几何形状和外观,并在训练期间处理射线采样空间(annealing the .
2022-04-27 16:41:56
3348
2
原创 【论文解析】FENeRF: Face Editing in Neural Radiance Fields
文章目录内容速览具体方法1. 局部可编辑的NeRF生成器2. 判别器3 训练内容速览人像生成方法2D GANs:生成高保真度的人像,但图像一致性较低。3D-aware GANs:可以保持视图的一致性,但它们生成的图像不能本地编辑。FENeRF:一个3d感知的生成器,可以产生一致的视图和本地编辑的肖像图像。我们的方法使用两个解耦的latent codes (可以理解为无关)在一个空间对齐的具有共享几何的三维体中生成相应的面部语义和纹理FENeRF可以联合渲染边界对齐图像和语义掩码(se
2022-04-27 11:18:11
1871
原创 【源码解析】psp training 过程
命令python scripts/train.py \--dataset_type=ffhq_encode \--exp_dir=./logs/mytraining \--workers=8 \--batch_size=8 \--test_batch_size=8 \--test_workers=8 \--val_interval=2500 \--save_interval=5000 \--encoder_type=BackboneEncoderUsingLastLayerIntoW
2022-04-25 20:00:59
1207
原创 pixel2style2pixel 源码解析【2】
文章目录项目分析一些重要功能的实现函数项目分析文章中提到用psp可以实现多种应用。 参考【论文解析】Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation.项目中,包scriptes 包含了这些应用对应的运行文件。上一次,我们在【源码解析】Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation 中已经走通了inference.py的整个
2022-04-24 21:11:51
1277
原创 【论文解析】Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation
文章目录内容速览Methodsframework损失函数StyleGAN 域的好处实验StyleGAN 反转Face Frontalization(人脸转正)条件图像合成Face From SketchFace from Segmentation MapExtending to Other ApplicationsGoing Beyond the Facial Domain讨论总结内容速览pixel2style2pixel(pSp):一种通过的image-to-image的转化框架基于encod.
2022-04-24 11:01:07
4823
1
原创 【源码解析】StyleNeRF
地址:https://github.com/facebookresearch/StyleNeRFReadme训练新的模型python run_train.py outdir=${OUTDIR} data=${DATASET} spec=paper512 model=stylenerf_ffhq使用预训练模型渲染python generate.py --outdir=${OUTDIR} --trunc=0.7 --seeds=${SEEDS} --network=${CHECKPOINT_
2022-04-23 16:21:25
1865
9
原创 S TYLE N E RF: A S TYLE - BASED 3D-A WARE G ENERA - TOR FOR H IGH - RESOLUTION I MAGE S YNTHESIS
文章目录AbstractMethod3.1 IMAGE SYNTHESIS AS NEURAL IMPLICIT FIELD RENDERING基于风格生成的 NeRFVolume RenderingChallenges3.2 高分辨率图像生成的近似值3.3 PRESERVING 3D CONSISTENCY**Unsampler design****NeRF path regularization**Remove view direction conditionFix 2D noise injecti.
2022-04-21 11:15:09
2981
1
原创 【源码解析】Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation
文章目录Readmetraining:inferenceinference.py参数人脸对齐工作尝试进行inference问题Readme发现了http://localhost:8888/notebooks/notebooks/inference_playground.ipynb 待用预训练模型下载中,要使用预训练模型 --checkpoint_pathtraining:如果要在自己的数据集上面实验, 在data_configs.py总定义数据路径。 在transforms_config
2022-04-20 21:12:25
1066
4
原创 【NeRF】IBRNet论文内容回顾
文章目录摘要回顾框架流程具体实现原文回顾Method 细节1 视角的选择和特征的提取2 用IBRNet 预测颜色和体密度。3 渲染和训练实现细节效果分析摘要回顾框架流程(1)选取目标视角最近的N个源视角图像作为工作集如何判定视角之间的远近?只选择一部分数据集作为工作集,算是操作少样本的角度在发展。感觉这个设定只适用于特定视角的渲染, 那如何生成360°的场景呢,难道每个视角还需要重新选择工作集重新训练吗?(2)从源视觉图像中提取潜在的2D特征(3)对多视图的2D特征进行聚合,得到密度特
2022-04-08 11:32:43
2414
原创 【NeRF】论文与代码综合分析及疑问解答
精读了文章《Representing Scenes as Neural Radiance Fields for View Synthesis》, 又看了一遍yen版源码,现在来再回顾一遍论文,尝试回答一些问题。文章目录论文内容回顾摘要IntroductionNeRF实现细节实验结果问题与分析1. 如何生成一个随机的测试视角,其对应的poses 应该如何计算?2. positional encoding在代码中何处,如何实现?4. 为什么密度只与坐标有关而和视角方向无关,可以促进多视图一致性呢?5. 代码中
2022-04-07 11:48:09
5326
6
原创 【NeRF】深度解读yenchenlin/nerf-pytorch项目
前面我们已经成功地在yen项目上运行的我们自己的数据集。但是效果比较差, 分析原因可能有以下两点。1、 用于训练的数据集分辨率过低2、超参数使用不巧当Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering论文中记录的效果我们自己运行出来的效果。文章目录目标变量探索Render_posesload_llff_data()的参数recenter?目标通过阅读yen源码,尝试回答以下问.
2022-04-02 18:48:36
13836
34
原创 【NeRF】在yenchenlin/nerf-pytorch上运行新的数据集
现在有的东西数据集:和yen给出测试数据集进行对比圈出来的文件是有的,不确定其他没有的文件影不影响运行先试一下再说。在yen上运行自己的数据集yen 是这么说的也就是说,yen为每个数据集都准备了对应的config文件。fern的config文件内容如下:expname = fern_testbasedir = ./logsdatadir = ./data/nerf_llff_data/ferndataset_type = llfffactor = 8llffhold =
2022-03-31 08:08:47
8059
16
原创 Nerf项目LLFF 解决新场景pose生成的问题
文章目录LLFF项目了解尝试利用llff为自己的数据集生成pose。MIP是什么?几个重要的链接地址github-llff : https://github.com/fyusion/llffgithub-yen: https://github.com/yenchenlin/nerf-pytorchgithub-2020eccv: https://github.com/bmild/nerfLLFF项目了解这是一个利用预训练好的 模型,来进行render的demo。bash download_
2022-03-29 17:21:52
8486
3
原创 Docker容器,针对不同集群环境的配置方法
集群环境文章目录重点关注cuda版本。尝试运行 【Step1】docker run --name yen_v3 --runtime=nvidia --gpus=all -v ~/workspace/NeRF:/zj -tid 172.20.208.7/zhaojing_repo/nerf:yen37_v2 bash报错:docker: Error response from daemon: Unknown runtime specified nvidia.尝试解决方案1:在 /etc/d
2022-03-26 16:16:13
2504
Simple_Rules_AI.pdf
2020-05-27
Hands-onPythonTutorial.pdf
2020-05-27
工程领域大数据和人工智能原则.pdf
2020-05-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅