利用机器学习和弥散张量成像(DTI)及神经纤维方向分散和密度成像(NODDI)对慢性创伤性脑损伤进行分类:一项复制与拓展研究

目录

1. 研究背景

2. 研究方法

2.1 样本选择

2.2 评估工具

2.3 DTI和NODDI成像

2.4机器学习分类

2.5数据分析

3. 研究结果

3.1 基于FA的分类结果

3.2 基于NODDI ODI的分类结果

3.3 基于NODDI Viso的分类结果:

3.4 错误分类的参与者特征分析:

3.5 综合分析

4. 结论与讨论

5. 局限性与未来展望


1. 研究背景

创伤性脑损伤(TBI)是全球重要的健康问题,每年约有6900万人遭受TBI。在TBI的急性阶段,损伤主要发生在髓鞘化的白质纤维束内,这些纤维束连接大脑不同区域并支持神经认知功能。急性TBI期间的生物力学力量(如大脑在颅骨内的快速加速和减速)会导致弥漫性轴索损伤(DAI)或白质纤维束内轴突的剪切。然而,TBI不仅反映急性损伤后的恢复,还被认为是一种慢性且可能具有神经退行性的疾病。例如,在急性TBI后,特定蛋白质(如β-淀粉样蛋白)会在脑组织内积累,导致慢性阶段的神经退行性过程,如注意力难以集中和记忆困难。此外,患有急性和慢性TBI的个体表现出不同的白质结构完整性异常,这些异常可以通过扩散张量成像(DTI)指标来量化,其中分数各向异性(FA)是常用指标。然而,FA在区分急性和慢性TBI方面存在局限性,尤其是在含有交叉纤维的白质纤维束中,FA值可能被低估。因此,研究者需要探索更可靠的白质结构完整性测量方法,以更好地识别和分类慢性TBI患者。


 

2. 研究方法

研究采用机器学习方法,结合弥散张量成像(DTI)和神经纤维方向分散和密度成像(NODDI)技术,对慢性创伤性脑损伤(TBI)进行分类。研究基于一个大型法医数据库,样本为160名男性囚犯,其中80名有自我报告的慢性TBI病史(TBI+),80名无TBI病史(TBI−)。研究使用线性支持向量机(SVM)模式分类器,以DTI中的分数各向异性(FA)和NODDI中的方向分散指数(ODI)及各向同性体积(Viso)作为特征,对两组进行分类分析。研究方法具体步骤如下:

2.1 样本选择

从法医数据库中随机选择160名男性囚犯,包括:

(1)80名有慢性TBI病史的囚犯

(2)80名无TBI病史的对照组囚犯

所有参与者均完成DTI扫描,并通过自我报告问卷评估TBI病史。


 

2.2 评估工具

使用修改版的Rivermead脑震荡后症状问卷(RPCSQ)评估TBI病史,包括受伤年龄、后果及意识丧失情况。

使用韦氏成人智力量表(WAIS-III)评估全量表智商(IQ)。

使用修订版Hare精神病检查表评估精神病特征。

使用DSM-IV轴I障碍的结构化临床访谈评估创伤后应激障碍(PTSD)和物质使用障碍(SUDs)。


 

2.3 DTI和NODDI成像

使用1.5T西门子Avanto移动MRI扫描仪获取扩散加权图像。

DTI数据处理包括涡流运动校正脑提取扩散张量估计FA图生成

NODDI技术用于估计神经纤维的方向分散指数(ODI)和各向同性体积(Viso),并将其变形到标准模板。


 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值